
更新时间：2019-12-11 11:45:22

16 虚拟机退出时机问题研究

1. 前言

前一节我们讲述了如何通过读源码，查询 StackOverFlow，写 DEMO 方式学习线程池。

然而线程池在使用过程中会遇到很多问题，本节将通过几个案例研究 Java 虚拟机关闭的问题。

2. 背景知识

本节重点学习 JVM 关闭时机相关问题，那么 JVM 在何时正常退出呢（不包含通过 kill 指令杀死进程等情况）？

根据《 Java 虚拟机规范 (Java SE 8 版)》 第 228 页，对应英文版为 5.7 Java Virtual Machine Exit 的相关描述我们

可知：

Java 虚拟机退出的条件是，某个线程调用了 Runtime 类或 System 类的 exit 方法，或 Runtime 类的 halt

方法，并且 Java 安全管理器也允许这次 exit 或 halt 操作。

除此之外， JNI (Java Native Interface) 规范描述了用 JNI Invocation API 来加载或卸载 Java 虚拟机时，Java

虚拟机的退出情况 1。

根据《Java 并发编程实践》 164 页相关论述 ，我们还了解到：

勤学如春起之苗，不见其增，日有所长。——陶潜

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.7
file:///read/55/article/1152
file:///read/55/article/1154

也可以通过一些其他平台相关的手段（比如发送 SIGINT, 或键入 Ctrl-C）, 都可以实现 JVM 的正常关闭。还

可以调用 “杀死” JVM 的操作系统进程而强制关闭 JVM 2。

另外根据《Java Language Specification : Java SE 8 Edition》12.8 Program Exit 的相关描述 3 我们可知：

当下面两种情况发生时，程序将会结束所有活动并退出：

只剩下守护线程（ daemon thread）时。

某个线程调用了 Runtime 类或 System 类 的 exit 方法，并且 Java 安全管理器也允许这次 exit 操作。

了解这个背景知识，接下来我们将开始分析相关的案例。

3. 案例及其分析

3.1 JUnit 单元测试不支持多线程问题

本案例涉及两个类，一个是自定义线程类，一个是测试类。

自定义线程类：

对应的单元测试：

预期结果为，每个线程分别执行 4 次打印语句。

import java.util.concurrent.TimeUnit;

public class DemoThread extends Thread {

 public DemoThread() {
 }

 @Override
 public void run() {
 for (int i = 0; i < 4; i++) {
 System.out.println(Thread.currentThread().getName() + "-->" + i);
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ignore) {
 }
 }
 }

}

public class ThreadDemoTest {
 @Test
 public void test() throws InterruptedException {
 DemoThread demoThread1 = new DemoThread();
 DemoThread demoThread2 = new DemoThread();

 demoThread1.start();
 demoThread2.start();
 }
}

https://docs.oracle.com/javase/specs/jls/se8/html/jls-12.html#jls-12.8

但是实际运行结果为：

Thread-0–>0

Thread-1–>0

打印两行文字后程序退出。

通过观察现象，我们看出 JUnit 单元测试 “不支持多线程” 测试，换句话说两个线程可能还没没执行完，程序就退出

了。

我们首先尝试使用 ** 断点调试大法 ** 来寻找线索。

我们通过查看左侧的调用栈，可以清晰地看到顶层的为 com.intellij.rt.execution.junit.JUnitStarter#main 的 70 行，通

过一系列的调用，启动当前测试方法。

按照惯例，我们可以双击左侧的调用进入源码。

但是，令人吐血的是，双击没反应，崩溃中…

既然 IDEA 可以使用该类，那么显然此类可以被 IDEA 加载，根据最外层的入口包名

（com.intellij.rt.execution.junit），我们断定不是 JDK 中的类，也不是我们 pom.xml 中引入的 jar 包中的类，应该是

idea 自己的类库。

我们去 IDEA 的安装目录去寻找线索。排查了 lib 文件夹下的所有 jar 包，发现和名称相匹配的 jar 包。

我们如何查看这几个 jar 中有没有源码和上面的匹配呢？

可以使用前面介绍的 Java 反编译工具： JD-GUI，查看这些包的源码。

由于我们使用的是 JUnit4 我们首先查看 junit-rt.jar 的反编译代码。

我们在此处找到了 IDEA 调试时顶层的类！

从此反编译的代码可以看到， main 函数的 70 行。

该函数调用准备流和开始函数，并获得返回值作为退出码，然后调用 System.exit(exitCode); 退出 JVM。

因此问题就迎刃而解了。

我们重新梳理执行流程：

 int exitCode = prepareStreamsAndStart(array, agentName, listeners, name[0]);

http://java-decompiler.github.io/

IDEA 运行 JUnit 4 时，

1. 先执行 com.intellij.rt.execution.junit.JUnitStarter#main ，此函数中调用 prepareStreamsAndStart 子函数；

2. 子函数最终调用到 ThreadDemoTest#test 的代码。

3. ThreadDemoTest#test 创建两个新线程并依次开启后结束，函数返回退出码，最终调用 System.exit(exitCode)

; 退出 JVM。

那么如何避免两个子线程尚未执行完单元测试函数，就被主线程调用 System.exit 导致 JVM 退出呢？

方案 1：可以将代码写在 main 函数中；

还记得开头说的吗，只要有一个非守护线程还在运行，虚拟机就不会退出（正常情况下）。

使用 main 函数代码非常简单，这里就不再提供。

方案 2：可以使用 CountDownLatch；

改造自定义的线程类：

修改单元测试函数：

由于使用了 countDownLatch.await(); 主线程会阻塞到两个线程都执行完毕。

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

public class DemoThread extends Thread {

 private CountDownLatch countDownLatch;

 public DemoThread(CountDownLatch countDownLatch) {
 this.countDownLatch = countDownLatch;
 }

 @Override
 public void run() {
 for (int i = 0; i < 4; i++) {
 System.out.println(Thread.currentThread().getName() + "-->" + i);
 try {
 TimeUnit.SECONDS.sleep(10);
 } catch (InterruptedException ignore) {
 }
 }
 countDownLatch.countDown();
 }

}

@Test
public void test() throws InterruptedException {
 CountDownLatch countDownLatch = new CountDownLatch(2);
 DemoThread demoThread1 = new DemoThread(countDownLatch);
 DemoThread demoThread2 = new DemoThread(countDownLatch);

 demoThread1.start();
 demoThread2.start();

 countDownLatch.await();
}

具体原理大家可以查看 java.util.concurrent.CountDownLatch#await() 源码。

方案 3：可以在测试函数最后调用 join 函数：

join 函数会等待当前线程执行结束再继续执行。

3.2 使用 CompletableFuture 的问题

大家可以猜想一下下面代码的执行结果是啥？

可能出乎很多人的意料，如果运行此段代码，大概率会发现：打印语句并没有被执行程序就退出了。

What? ** 前面不是说多线程问题可以通过将代码写在 main 函数中来避免的吗？** 怎么瞬间打脸？

别急，我们来研究一下这个问题：

通过源码注释，我们可知该函数是使用给定的 executor 来异步执行任务。

那么使用的线程池类型是什么呢？

@Test
public void test() throws InterruptedException {
 DemoThread demoThread1 = new DemoThread();
 DemoThread demoThread2 = new DemoThread();

 demoThread1.start();
 demoThread2.start();

 demoThread1.join();
 demoThread2.join();
}

public class CompletableFutureDemo {

 public static void main(String[] args) {
 CompletableFuture.runAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(2L);
 } catch (InterruptedException ignore) {
 }
 System.out.println("异步任务");
 });
 }
}

/**
 * Returns a new CompletableFuture that is asynchronously completed
 * by a task running in the given executor after it runs the given
 * action.
 *
 * @param runnable the action to run before completing the
 * returned CompletableFuture
 * @param executor the executor to use for asynchronous execution
 * @return the new CompletableFuture
 */
public static CompletableFuture<Void> runAsync(Runnable runnable,
 Executor executor) {
 return asyncRunStage(screenExecutor(executor), runnable);
}

我们查看 asyncPool 的具体类型：

默认是 ForkJoinPool.commonPool() ，如果不支持并行则会构造一个新的 ThreadPerTaskExecutor 线程池对象。

我们再次回到正题，我们可以查看调用链：

java.util.concurrent.CompletableFuture#runAsync(java.lang.Runnable)

java.util.concurrent.CompletableFuture#asyncRunStage

java.util.concurrent.ForkJoinPool#execute(java.lang.Runnable)

java.util.concurrent.ForkJoinPool#externalPush

…

最终调用到：

java.util.concurrent.ForkJoinPool#registerWorker

/**
 * Null-checks user executor argument, and translates uses of
 * commonPool to asyncPool in case parallelism disabled.
 */
static Executor screenExecutor(Executor e) {
 if (!useCommonPool && e == ForkJoinPool.commonPool())
 return asyncPool;
 if (e == null) throw new NullPointerException();
 return e;
}

/**
 * Default executor -- ForkJoinPool.commonPool() unless it cannot
 * support parallelism.
 */
 private static final Executor asyncPool = useCommonPool ?
 ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();

 /** Fallback if ForkJoinPool.commonPool() cannot support parallelism */
 static final class ThreadPerTaskExecutor implements Executor {
 public void execute(Runnable r) { new Thread(r).start(); }
 }

如下图所示，大家可以在 registerWorker 函数的设置守护线程代码的地方打断点，然后调试，通过查看左侧

“Debugger” 选项卡的 “Frames” 调用栈来研究整个调用过程，也可以切换到 “Threads” 来查看线程的运行状态。

接下来我们看源码：

从这里可知 ForkJoinPool 的工作线程类型为守护者线程。

根据前面背景知识的介绍，我们可知如果只有守护线程，程序将退出。

另外，我们也可以从设置守护线程的函数中找到相关描述：

/**
 * Callback from ForkJoinWorkerThread constructor to establish and
 * record its WorkQueue.
 *
 * @param wt the worker thread
 * @return the worker's queue
 */
final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
 UncaughtExceptionHandler handler;
 // 第 1 处
 wt.setDaemon(true); // configure thread
 // 省略中间代码
 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
 return w;
}

因此我们重新分析上面的案例：

主线程为普通用户线程，执行到第 1 处，使用默认的 ForkJoinPool 来异步执行传入的任务。

此时工作线程（守护线程）如果得到运行机会，调用 TimeUnit.SECONDS.sleep(2L); 导致该线程 sleep 2 秒钟。

主线程执行到第 2 处 （无代码），然后主线程执行完毕。

此时已经没有非守护线程，还不等工作线程从 Time waiting 睡眠状态结束，虚拟机发现已经没有非守护线程，便退

出了。

3.3 拓展练习

有了上面的介绍，想必大家对虚拟机的退出时机有了一个不错的了解，那么我们看下面的代码片段：

请问程序执行后是否一定执行到 finally 代码块，为什么？

/**
 * Marks this thread as either a {@linkplain #isDaemon daemon} thread
 * or a user thread. The Java Virtual Machine exits when the only
 * threads running are all daemon threads.
 *
 * <p> This method must be invoked before the thread is started.
 *
 * @param on
 * if {@code true}, marks this thread as a daemon thread
 *
 * @throws IllegalThreadStateException
 * if this thread is {@linkplain #isAlive alive}
 *
 * @throws SecurityException
 * if {@link #checkAccess} determines that the current
 * thread cannot modify this thread
 */
public final void setDaemon(boolean on) {
 checkAccess();
 if (isAlive()) {
 throw new IllegalThreadStateException();
 }
 daemon = on;
}

public static void main(String[] args) {
 // 第 1 处
 CompletableFuture.runAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(2L);
 } catch (InterruptedException ignore) {
 }
 System.out.println("异步任务");
 });
 // 第 2 处
}

结合今天所学内容，很多朋友可能会想到，在第 2 处如果让当前虚拟机退出，那么 finally 代码块就不会再执行。

因此可以添加 System.exit(2) 来实现。

当然还有其他的方法能够实现，大家可以在评论区畅所欲言。

4. 总结

本节重点讲述了虚拟机退出的条件，举了几个案例让大家能够对此有深刻的理解。

本节使用了读源码法，官方文档法，断点调试法等来分析这两个案例。

下一节我们将讲述如何解决多条件语句和条件语句的多层嵌套问题。

5. 思考题

请看下面代码片段，回答问题。

问题：如果 try 代码块发生异常，如何在第 1 处代码添加几行代码，使得 finally 代码块可以被执行到呢？

参考资料

1. [美] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley.《 Java 虚拟机规范 (Java SE 8 版)》. [译] 爱飞

翔，周志明等。机械工业出版社：2018:228 ��

public class Demo {

 public static void main(String[] args) {
 // 省略一些代码 （第 1 处）
 try {
 BufferedReader br = new BufferedReader(new FileReader("file.txt"));
 System.out.println(br.readLine());
 br.close();
 } catch (Exception e) {
 // 省略一些代码 （第 2 处）
 } finally {
 System.out.println("Exiting the program");
 }
 }
}

public class Demo {

 public static void main(String[] args) {

 // 省略一些代码 （第 1 处）
 try {
 BufferedReader br = new BufferedReader(new FileReader("file.txt"));
 System.out.println(br.readLine());
 br.close();
 } catch (Exception e) {
 System.exit(2);
 } finally {
 System.out.println("Exiting the program");
 }
 }
}

 15 学习线程池的正确姿势 
17 如何解决条件语句的多层嵌套

问题？

2. [美] Brian Goetz, Tim Peierls,etc.《Java 并发编程实践》. 韩锴，方妙译。北京。电子工业出版社. 2007.164

��

3. Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley.《Java Language Specification: Java SE 8 Edition》.

2015.378 ��

}

	1. 前言
	2. 背景知识
	3. 案例及其分析
	3.1 JUnit 单元测试不支持多线程问题
	3.2 使用 CompletableFuture 的问题
	3.3 拓展练习

	4. 总结
	5. 思考题
	参考资料

