
更新时间：2019-12-04 10:01:57

21 单元测试构造数据的正确姿势

1.前言

前面讲到了单元测试的概念和好处，讲到了 Java 单元测试常用框架。

写过很多单元测试的朋友会发现，单元测试的重要环节就是构造测试数据，单元测试构造测试数据往往非常耗时，

这也是很多人不喜欢写单元测试的重要原因之一。

因此本节将重点讲述有哪些单元测试中构造数据的方式，各种构造测试数据方式的优劣以及实际开发中该如何选

择。

2构造单测数据的方式

2.1 手动

所谓手动构造单元测试工具，是指在测试类或者函数中直接声明测试数据，或在初始化函数中填充数据：

不经一翻彻骨寒，怎得梅花扑鼻香。——宋帆

private List<String> mockStrList;

@Before
public void init() {
 mockStrList = new ArrayList<>();
 final int size = 10;
 for (int i = 0; i < size; i++) {
 mockStrList.add("something" + i);
 }
}

file:///read/55/article/1157
file:///read/55/article/1159

还可以在测试类中编写私有 mock 数据的函数来实现:

上述手动构造测试对象，当属性较多时，容易出错而且占据源码空间，而且不太优雅。

2.2 半自动

当所要构造的数据为复杂对象(属性较多的对象)时，手动构造对象非常耗时，而且属性设置容易遗漏。

所谓半自动是指使用插件自动填充所要构造对象的属性。

比如m可以使用 “Generate All setters” IDEA 插件，选择 ”generate all setter with default value“ 填充默认值，效

率提高很多。

生成如下代码：

还有一种非常常见的”半自动“构造测试数据的方式，采用 JSON 序列化和反序列化方式。

将构造的对象通过 JSON 序列化到 JSON 文件里，使用时反序列化为Java对象即可：

private UserDO mockUserDO() {
 UserDO userDO = new UserDO();
 userDO.setId(0L);
 userDO.setName("测试");
 userDO.setAge(0);
 userDO.setNickName("test");
 userDO.setBirthDay(Date.from(Instant.now()));
 return userDO;
}

private PdfData mockPdfData() {
 // 使用插件填充PdfData
 PdfData pdfData = new PdfData();
 pdfData.setId(0);
 pdfData.setName("some");
 pdfData.setWaterMark("test");
 pdfData.setPages(4);
 // 再次使用一次插件，填充PdfAttribute
 PdfAttribute pdfAttribute = new PdfAttribute();
 pdfAttribute.setWeight(1024L);
 pdfAttribute.setHeight(512L);
 pdfData.setPdfAttribute(pdfAttribute);
 return pdfData;
}

2.3自动

半自动的方式构造单元测试数据效率仍然不够高，而且缺乏灵活性，比如需要构造随机属性的对象，需要构造不同

属性的 N 个对象，就会造成编码复杂度陡增。

因此， java-faker 和 easy-random 应运而生。

2.3.1 java-faker

Java 构造测试数据中最常见的一种场景是：构造字符串。

如果想随机构造人名、地名、天气、学校、颜色、职业，甚至符合某正则表达式的字符串等，肿么办？

java-faker 是不二之选。

源码地址： https://github.com/DiUS/java-faker

基本用法如下：

@Test
public void testPdfData() {
 // 构造测试数据
 PdfData pdfData = ResourceUtil.parseJson(PdfData.class, "/data/pdfData.json");
 System.out.println(JSON.toJSONString(pdfData));

 log.info("构造的数据:{}", JSON.toJSONString(pdfData));

 // 测试export 函数
 Boolean export = PdfUtil.export(pdfData);
 Assert.assertTrue(export);
}

@Slf4j
public class FakeTest {

 @Test
 public void test() {
 // 指定语言
 Faker faker = new Faker(new Locale("zh-CN"));

 // 姓名
 String name = faker.name().fullName();
 log.info(name);
 String firstName = faker.name().firstName();
 String lastName = faker.name().lastName();
 log.info(lastName + firstName);
 // 街道
 String streetAddress = faker.address().streetAddress();
 log.info(streetAddress);

 // 颜色
 Color color = faker.color();
 log.info(color.name() + "-->" + color.hex());

 // 大学
 University university = faker.university();
 log.info(university.name() + "-->" + university.prefix()+":"+university.suffix());
 }
}

https://github.com/DiUS/java-faker

另外特别建议大家通过 Codota 的方式来查看其他开源项目中该类或者函数的用法：

还可以下载源码后查看核心类的核心函数来了解主要功能。

也可以通过源码提供的单元测试代码来学习更多用法，还可以通过调试来验证一些效果：

2.3.2 easy-random

Java-faker 虽然可以构造不同种类的字符串测试数据，但是如果需要构造复杂对象就有些”力不从心“。

此时 easy-random 就要上场了。

源码地址：https://github.com/j-easy/easy-random

官方文档：https://github.com/j-easy/easy-random/wiki

https://github.com/j-easy/easy-random
https://github.com/j-easy/easy-random/wiki

easy-random 可以轻松构造复杂对象，支持定义对象中集合长度，字符串长度范围，生成集合等。

正如前面手动构造和半自动构造测试数据所给出的示例代码所示，构造复杂对象非常耗时且编码量较大，而使用

easy-random，直接调用 easyRandom#nextObject一行代码即可自动构建测试对象：

Easy-random 还支持通过 EasyRandomParameters 来定制构造对象的细节，如对象池大小、字符集、时间范围、

日期范围、字符串长度范围、集合大小的范围等。

建议大家一定要拉取 easy-random 源码，查看更多属性，包括 EasyRandomParameters 的默认值，以及运行其官

方的单元测试来了解更多高级用法。

如可以查看其日期时间范围参数测试类: DateTimeRangeParameterTests ，来学习如何设置日期范围构造数据的日

期范围：

private EasyRandom easyRandom = new EasyRandom();

 @Test
 public void testPdfData() {
 // 构造测试数据
 PdfData pdfData = easyRandom.nextObject(PdfData.class);
 System.out.println(JSON.toJSONString(pdfData));

 log.info("构造的数据:{}", JSON.toJSONString(pdfData));

 // 测试export 函数
 Boolean export = PdfUtil.export(pdfData);
 Assert.assertTrue(export);
 }

EasyRandomParameters parameters = new EasyRandomParameters()
 .seed(123L)
 // 对象池大小
 .objectPoolSize(100)
 // 对象图的最大深度
 .randomizationDepth(3)
 // 字符集
 .charset(forName("UTF-8"))
 // 时间范围
 .timeRange(nine, five)
 // 日期范围
 .dateRange(today, tomorrow)
 // 字符串长度范围
 .stringLengthRange(5, 50)
 // 集合元素个数的范围
 .collectionSizeRange(1, 10)
 // 接口或抽象类时是否扫描具体的实现类
 .scanClasspathForConcreteTypes(true)
 // 是否重写默认的初始化方法
 .overrideDefaultInitialization(false)
 // 是否忽略错误
 .ignoreRandomizationErrors(true);

EasyRandom easyRandom = new EasyRandom(parameters);

 20 单元测试的知识储备 22 单元测试之单测举例

我们不仅可以通过官方的单元测试来学习该框架的用法，还通过源码单元测试的范例来学习如何更好地编写单元测

试。

可以在单元测试中打断点来观察构造对象的属性值，甚至可以通过单步来研究构造对象的过程。

更多高级用法，请自行拉取源码继续学习。

3如何选择？

前面讲到了构造单元测试数据的常用手段主要分为三种：手动构造、半自动、自动构造。

那么该如何做出恰当的选择呢？

下面给出一些建议：

当构造的测试数据非常简单时，如构造一个整型测试数据或者待构造的对象属性极少时，可以使用手动构造的

方式，简单快速；

当待构造的对象属性均需要手动修改时，建议采用半自动的方式，使用插件构造测试对象并手动赋值或者使用

JSON 反序列化的方式；

当待构造的测试数据为特定字符串时，如人名、地名、大学名称时，建议使用 java-faker；

当待构造的测试对象较为复杂时，如属性极多或者属性中又嵌套复杂对象时，建议使用 easy-random。

4总结

本小节主要介绍了构造单元测试数据的几种常见手段，如手动构造、半自动、自动三种方式。并介绍了每种方式

的常见构造方法以及各自的优劣，并给出了如何根据具体场景做出恰当的选择。

希望大家在学习其他知识时，也要对知识进行归类和对比，这样才能深刻理解知识，才能举一反三。

下一节将给出单元测试的一些具体案例。

5课后作业

拉取 java-faker 和 easy-random的源码，运行关键类的单测来快速学习它们的用法。

}

@Test
void testDateRange() {
 // Given
 LocalDate minDate = LocalDate.of(2016, 1, 1);
 LocalDate maxDate = LocalDate.of(2016, 1, 31);
 EasyRandomParameters parameters = new EasyRandomParameters().dateRange(minDate, maxDate);

 // When
 TimeBean timeBean = new EasyRandom(parameters).nextObject(TimeBean.class);

 // Then
 assertThat(timeBean.getLocalDate()).isAfterOrEqualTo(minDate).isBeforeOrEqualTo(maxDate);
}

	1.前言
	2构造单测数据的方式
	2.1 手动
	2.2 半自动
	2.3自动
	2.3.1 java-faker
	2.3.2 easy-random

	3如何选择？

	4总结
	5课后作业

