
更新时间：2019-12-16 09:45:15

26 代码重构的正确姿势

1. 前言

在软件迭代过程中常常会因为原来的功能有 BUG、无法满足新的需求、性能遇到瓶颈等原因为需要对代码进行重

构。

那么：

为什么要重构？

如何保证重构代码的正确性？

有哪些重构技巧？

这三个关键问题都是本节的重点探讨的内容。

2. 什么是重构？何时重构？

2.1 什么是重构？

想了解为何要重构以及如何重构，就要先搞清楚什么是重构。

重构（ refactoring）是这样的一个过程：在不改变代码外在行为的前提下，对代码进行修改，以改进程序的内

部结构。本质上讲，重构就是在代码写好之后，改进它的设计。 – 《重构》1

天才就是这样，终身努力，便成天才。——门捷列夫

file:///read/55/article/1162
file:///read/55/article/1164

2.2 何时动手重构？

2.2.1 添加新功能的时候

当因为新的需求要为系统添加新功能时，可能会发现很多问题。

比如发现不同的类需要使用同一段代码，而这段代码在之前的一个类中；发现分支条件越来越多，难以维护；发现

随着功能的增强，函数的参数列表越来越长，代码长度太长难以理解等。

可以借助开发新功能的时机去对代码进行重构。

2.2.2 修复错误时重构

当我们收到一份来自测试或者技术支持提过来的 “编码缺陷” 的 jira 时几乎就意味着我们要重构代码了。

可能是接口的结果不符合预期，也可能是接口的性能达不到要求。

2.2.3 代码审查时重构

很多公司都会有代码审查机制，复杂、重要的项目都要通过代码审查（ Code Review） 后才能上线。

在代码审查阶段，代码审查人员可能对我们代码的可读性、可维护性、代码的性能等进行评价并给出建议。

如果代码审车人员给出了比较合理的建议，此时就要对有问题的代码进行重构。

3. 如何保证重构代码的正确性？

重构技巧千万种，保证正确性是关键。 那么如何保证重构代码的正确性呢？

正如单元测试的章节所讲的一样，单元测试是保证代码正确性的强有力保证。

《重构》第二版 2“重构第一步” 小节有这样一段描述：

进行重构时，我们需要依赖测试。我们将测试视为 bug 检查器，它们能够保护我们不被自己犯的错所困扰。

把我们想表达的目标写两遍 -- 代码里写一遍，测试里再写一遍 -- 我们的错误才能骗过检测器。这降低了我们

犯错的概率。尽管编写测试需要花费时间，但却为我们节省下可观的调试时间。

因此要保证重构的代码都可以通过测试，如果前人并没有编写对应的单元测试，可以在重构时补上对应的单元测

试。

4. 一些重构技巧

Java 代码的重构主要包括以下几个方面：代码的 “坏味道”，对象之间的重构，数据的重构，函数调用的重构和表

达式简化的重构。

4.1 代码的坏味道

代码的坏味道有很多种，常见的包括：重复代码，过长的函数，过大的类，过长的参数列表，过多的注释等。

重复代码通常有 3 种情况，

1、同一个类的多个函数包含重复代码， 此时可以将公共代码提取为该类的私有函数，在上述函数中调用；

2、互为兄弟的子类之间包含相同的代码，此时应该将重复代码上移到父类中；

3、两个毫不相关的出现重复代码，此时应该将公共代码抽取到一个新类中。

比如在实际开发中，经常需要根据将某个字段和枚举的值进行比较，可能频繁出现如下代码：

那么如何变得更优雅呢？

项目中多处需要执行批量逻辑，可能需要对接口数量做限制，会在项目中多处出现这种代码：

此时可以将其封装到工具类中：

如果在项目中多个地方需要类似的逻辑， 则直接调用该工具类即可：

如果函数过长，读懂函数的逻辑将变得非常困难，接手代码的人需要花费较多时间才能读懂这些代码。

Integer someType = xxxDTO.getType();
// 第一种形式
if (CoinEnum.PENNY.getValue() == someType) {
 // 代码省略
}

// 第二种形式
if (CoinEnum.PENNY == CoinEnum.getByValue(someType)) {
 // 代码省略
}

 public <T> void aRun(List<T> dataList) {

 if (CollectionUtils.isEmpty(dataList)) {
 return;
 }
 int size = 10;

 // 每 10 个元素为一组执行一次
 Lists.partition(dataList, size).forEach((data) -> someRun(dataList));
 }

 private <T> void someRun(List<T> dataList) {
 // 省略
 }

public static <T> void partitionRun(List<T> dataList, int size, Consumer<List<T>> consumer) {
 if (CollectionUtils.isEmpty(dataList)) {
 return;
 }
 Preconditions.checkArgument(size > 0, "size must > 0");
 Lists.partition(dataList, size).forEach(consumer);
}

// 每批 10 个
ExecuteUtil.partitionRun(mockDataList, 10, (eachList) -> a.someRun(eachList));

// 每批 20 个
ExecuteUtil.partitionRun(mockDataList, 20, (eachList) -> b.otherRun(eachList));

在工作中，如果接手的代码某一行报错，但是代码行数很多，一般需要读懂整个函数逻辑才敢动手修改，是一件非

常痛苦的事情。根据《手册》 "【推荐】单个函数总行数不超过 80 行” 3 的建议，需要将大函数拆分成多个子步骤

（函数）。最好的办法是搞清楚该函数分为几个步骤，分别将每个子步骤提取为一个子函数即可。

如果类过大，通常是函数太多，成员变量过多。如果是函数太多，通常可以根据将函数归类，拆分到不同的类中，

一个常见的做法是将 OrderService`` 拆成 OrderSearchService 和 OrderOperateService 分别承担订单的搜索和非

搜索业务。如果是成员变量过多，则需要考虑是否应该多个成员变量抽取到某个类中，后者一部分成员变量是否应

该属于某个类，通过将新类当做成员变量来消减成员变量的数量。

如果函数的参数较长，传参时需仔细核实参数列表以避免误传。如果对外暴露的接口，需要新增一个属性时，为

了避免修改签名让二方被迫跟着修改调用的代码，就需要新增一个接口，这种不优雅的方案。根据《手册》的分层

领域模型规约部分的建议，应该将请求的参数封装成查询对象。这也是一个宝贵的开发经验，尤其是暴露给二方

RPC 接口时，如果未来可能修改参数，尽量使用对象来接收参数，避免因函数签名不同而导致错误。

如果代码中的注释过多，应该简化注释，尽量只在关键步骤，特殊逻辑上添加注释，应该使用变量和函数名来表

意。

4.2 重新组织函数

当函数中条件表达式较为复杂时，应该将复杂表达式或者其中一部分放到临时变量中，并通过变量名来表达其用

途，也可以将部分表达式在一起组成一个含义，还可以将其封装到函数中。

可以参见 spring TypeConverterDelegate#convertToTypedCollection 源码：

如果不在循环中对一个含义不明确的临时变量多次赋值时，需对每一次都创建独立的临时变量。

如下列代码使用一个临时变量表达多种含义：

应该修改为：

// 提取为变量
boolean approximable = CollectionFactory.isApproximableMapType(requiredType);
if (!approximable && !canCreateCopy(requiredType)) {
 if (logger.isDebugEnabled()) {
 logger.debug("Custom Map type [" + original.getClass().getName() +
 "] does not allow for creating a copy - injecting original Map as-is");
 }
 return original;
}
// 提取为函数
 private boolean canCreateCopy(Class<?> requiredType) {
 return (!requiredType.isInterface() && !Modifier.isAbstract(requiredType.getModifiers()) &&
 Modifier.isPublic(requiredType.getModifiers()) && ClassUtils.hasConstructor(requiredType));
 }

int temp = array.length;
// 省略中间代码
temp = user.getAge();

int length = array.length;
// 省略中间代码
int age = user.getAge();

如果调用二方批量接口响应很慢容易超时，除了可以像 4.1 重复代码所给出的示例一样，将其改为小批次调用，

并将小批次调用的结果进行聚合。

通过封装成工具函数实现复用，可以通过控制 size 来避免接口超时：

为了获取更快的响应速度，可以使用并发或并行特性:

public static <T, V> List<V> partitionCall2List(List<T> dataList, int size, Function<List<T>, List<V>> function) {

 if (CollectionUtils.isEmpty(dataList)) {
 return new ArrayList<>(0);
 }
 Preconditions.checkArgument(size > 0, "size must > 0");

 return Lists.partition(dataList, size)
 .stream()
 .map(function)
 .filter(Objects::nonNull)
 .reduce(new ArrayList<>(),
 (resultList1, resultList2) -> {
 resultList1.addAll(resultList2);
 return resultList1;
 });

}

还有无数种可以重构的情况，更多重构的场景和范例请参考《重构》这本经典著作，在编码过程中认真体会和运

用。

在平时开发时，在满足功能需求的基础上要注重代码的性能。

比如下面这段代码：

public static <T, V> List<V> partitionCall2ListWithCompletable(List<T> dataList,
 int size,
 ExecutorService executorService,
 Function<List<T>, List<V>> function) {

 if (CollectionUtils.isEmpty(dataList)) {
 return new ArrayList<>(0);
 }
 Preconditions.checkArgument(size > 0, "size must >0");

 // 异步调用并获取CompletableFuture对象列表
 List<CompletableFuture<List<V>>> completableFutures = Lists.partition(dataList, size)
 .stream()
 .map(eachList -> {
 if (executorService == null) {
 return CompletableFuture.supplyAsync(() -> function.apply(eachList));
 } else {
 return CompletableFuture.supplyAsync(() -> function.apply(eachList), executorService);
 }

 })
 .collect(Collectors.toList());

// 等待全部完成
 CompletableFuture<Void> allFinished = CompletableFuture.allOf(completableFutures.toArray(new CompletableFuture[0]));
 try {
 allFinished.get();
 } catch (Exception e) {
 throw new RuntimeException(e);
 }

 // 组合结果
 return completableFutures.stream()
 .map(CompletableFuture::join)
 .filter(CollectionUtils::isNotEmpty)
 .reduce(new ArrayList<V>(), ((list1, list2) -> {
 list1.addAll(list2);
 return list1;
 }));
}

public List<String> getImages(String type) {

 List<String> result = new ArrayList<>();

 if ("10*20".equals(type)) {

 result.add("http://xxxxxximg1.png");
 result.add("http://xxxxxximgx.png");
 // 省略其他
 } else if ("10*30".equals(type)) {
 result.add("http://yyyyimg1.png");
 result.add("http://yyyyimgy.png");
 // 省略其他
 }
 return result;
}

我们可以看到图片的内容是固定的，不需要每次都要查询，上面的写法每个请求都要创建一个 List 将对应的图片塞

进去再返回，完全没有必要。

可以参考下面的代码进行重构：

这样每次请求都会从 “缓存” 中获取，而且为了防止 map 被修改，将其设置为 unmodifiableMap，而且使用 Map 接

口的 getOrDefault 功能，大大简化了代码。

4.3 线程安全问题

当多线程共享变量是，要特别注意线程安全问题。

请看下面的例子：

private static Map<String, List<String>> images;

static {
 images = new HashMap<>();

 // 根据元素的个数设置初始长度
 List<String> first = new ArrayList<>(16);
 first.add("http://xxxxxximg1.png");
 first.add("http://xxxxxximg2.png");
 // 省略其他
 List<String> second = new ArrayList<>();
 second.add("http://yyyyimg1.png");
 second.add("http://yyyyimg2.png");
 // 省略其他

 images.put("10*20", first);
 images.put("10*30", second);
 images = Collections.unmodifiableMap(images);

}

public List<String> getImages(String type) {
 if (StringUtils.isBlank(type)) {
 return new ArrayList<>();
 }
 return images.getOrDefault(type, new ArrayList<>());
}

假设有多个线程并发调用 doGetData 函数，最初的前两个线程极短时间内依次走到第一处代码的判断处，都会进

入 if 代码块。

如果第一个线程在调用 data.addd (“c”) 后，如果第二个线程执行 data = new ArrayList<>(); 第一个线程返回 data

时，该集合内没有元素（元素丢失）。

针对该示例代码的情况，我们可以通过静态代码块来构造数据，也可以通过双重检查锁来实现。

参考修改 1：

参考修改 2：

@Service
public class DemoServiceImpl implements DemoService{

 private static List<String> data;

 private List<String> doGetData() {
 // 第一处代码
 if (data == null) {
 data = new ArrayList<>();
 data.add("a");
 data.add("b");
 data.add("c");
 }
 return data;
 }

 @Override
 public List<String> getData(String param) {
 // 省略其他
 List<String> data = doGetData();
 // 省略其他
 }
}

private static List<String> data;

static {
 data = new ArrayList<>();
 data.add("a");
 data.add("b");
 data.add("c");
 data = Collections.unmodifiableList(data);
}

我们在第 1 处代码加上 volatile 关键字来保证可见性，我们在第 2 处代码创建一个局部变量，避免使用 data = new

ArrayList<>(); ，因为这样会导致还没添加数据就已经创建了对象，另外一个线程并发访问时直接进行最外层判断

时就满足 data != null 返回没有元素的 data 集合。

4.4 使用权威的工具类

我们尽量使用 JDK 封装好的类，使用大公司开源的工具类，避免重复劳动。

平时可以多去 commons-lang3 、commons-collections4 、 guava 等知名工具类框架中了解其提供的简单实用的工

具类。

比如让当前线程 sleep 一段时间，不要用数字自行计算：

而应该使用时间相关的类：

如开发中计算耗时，通常获取开始和结束的时间，然后结束时间减去开始时间：

应该使用 StopWatch 类，不仅简单方便，而且该类还提供了更多强大功能：

 private static final Object LOCK = new Object();
 // 第 1 处代码
 private static volatile List<String> data;

 private List<String> doGetData() {
 if (data == null) {
 synchronized (LOCK) {
 if (data == null) {
 // 第 2 处代码
 ArrayList<String> inner = new ArrayList<>();
 inner.add("a");
 inner.add("b");
 inner.add("c");
 // 第 3 处代码
 data = Collections.unmodifiableList(inner);
 }
 }
 }
 return data;
 }

Thread.sleep(3 * 1000*60);

TimeUnit.MINUTES.sleep(1);

@Test
public void useTimeStamp() {
 long start = System.currentTimeMillis();
 // 省略一些代码
 long end = System.currentTimeMillis();
 System.out.println(end - start);
}

 25 阅读源码的正确姿势 27 Code Review的正确姿势

非常建议大家在开发中使用第三方工具类时能够主动进入其源码，打开函数列表，去查看里面提供的核心工具类，

有时候会有意外发现。

5. 总结

本文主要讲述什么是重构，何时重构，并选取几个典型场景为例说明如何重构。更多重构的场景和范例请参考《重

构》这本经典著作。另外推荐《编写可读代码的艺术》、《代码简洁之道》这两本书，它们都是提高代码可读性和

重构代码的不错参考资料。

参考资料 9

1. [美] Martin Fowler. 《重构：改善既有代码的设计》[M]. [译] 熊节。人民邮电出版社. 2010 ��

2. [美] Martin Fowler. 《重构：改善既有代码的设计（第 2 版）》[M]. [译] 熊节。人民邮电出版社. 2019 ��

3. 阿里巴巴与 Java 社区开发者.《 Java 开发手册 1.5.0》华山版. 2018 ��

}

@Test
public void useStopWatch() {
 StopWatch stopWatch = StopWatch.createStarted();
 // 省略一些代码
 System.out.println(stopWatch.getTime());
}

	1. 前言
	2. 什么是重构？何时重构？
	2.1 什么是重构？
	2.2 何时动手重构？
	2.2.1 添加新功能的时候
	2.2.2 修复错误时重构
	2.2.3 代码审查时重构

	3. 如何保证重构代码的正确性？
	4. 一些重构技巧
	4.1 代码的坏味道
	4.2 重新组织函数
	4.3 线程安全问题
	4.4 使用权威的工具类

	5. 总结
	参考资料 9

