
HTTP 调⽤添加⾃定义处理逻辑
本节核⼼内容

介绍 gin middleware 基本⽤法
介绍如何⽤ gin middleware 特性给 API 添加唯⼀请求 ID 和
记录请求信息

本⼩节源码下载路径：demo08
(https://github.com/lexkong/apiserver_demos/tree/master/demo08)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo07
(https://github.com/lexkong/apiserver_demos/tree/master/demo07)
来开发的。

需求背景

在实际开发中，我们可能需要对每个请求/返回做⼀些特定的操作，
⽐如记录请求的 log 信息，在返回中插⼊⼀个 Header，对部分接⼝
进⾏鉴权，这些都需要⼀个统⼀的⼊⼝，逻辑如下：

https://github.com/lexkong/apiserver_demos/tree/master/demo08
https://github.com/lexkong/apiserver_demos/tree/master/demo07

这个功能可以通过引⼊ middleware 中间件来解决。Go 的
net/http 设计的⼀⼤特点是特别容易构建中间件。apiserver 所使
⽤的 gin 框架也提供了类似的中间件。

gin middleware 中间件

在 gin 中，可以通过如下⽅法使⽤ middleware：

g := gin.New()
g.Use(middleware.AuthMiddleware())

其中 middleware.AuthMiddleware() 是
func(*gin.Context) 类型的函数。中间件只对注册过的路由函
数起作⽤。

在 gin 中可以设置 3 种类型的 middleware：

全局中间件
单个路由中间件
群组中间件

这⾥通过⼀个例⼦来说明这 3 种中间件。

全局中间件：注册中间件的过程之前设置的路由，将不会受注
册的中间件所影响。只有注册了中间件之后代码的路由函数规
则，才会被中间件装饰。
单个路由中间件：需要在注册路由时注册中间件
r.GET("/benchmark", MyBenchLogger(),
benchEndpoint)
群组中间件：只要在群组路由上注册中间件函数即可。

中间件实践

为了演示中间件的功能，这⾥给 apiserver 新增两个功能：

1. 在请求和返回的 Header 中插⼊ X-Request-Id（X-

Request-Id 值为 32 位的 UUID，⽤于唯⼀标识⼀次 HTTP
请求）

2. ⽇志记录每⼀个收到的请求

插⼊ X-Request-Id

⾸先需要实现 middleware.RequestId() 中间件，在
router/middleware ⽬录下新建⼀个 Go 源⽂件 requestid.go，
内容为（详⻅ demo08/router/middleware/requestid.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo08/router/middleware/requestid.go)

https://github.com/lexkong/apiserver_demos/blob/master/demo08/router/middleware/requestid.go

package middleware

import (
 "github.com/gin-gonic/gin"
 "github.com/satori/go.uuid"
)

func RequestId() gin.HandlerFunc {
 return func(c *gin.Context) {
 // Check for incoming header, use it if
exists
 requestId := c.Request.Header.Get("X-
Request-Id")

 // Create request id with UUID4
 if requestId == "" {
 u4, _ := uuid.NewV4()
 requestId = u4.String()
 }

 // Expose it for use in the application
 c.Set("X-Request-Id", requestId)

 // Set X-Request-Id header
 c.Writer.Header().Set("X-Request-Id",
requestId)
 c.Next()
 }
}

该中间件调⽤ github.com/satori/go.uuid 包⽣成⼀个 32 位
的 UUID，并通过 c.Writer.Header().Set("X-Request-
Id", requestId) 设置在返回包的 Header 中。

该中间件是个全局中间件，需要在 main 函数中通过 g.Use() 函数
加载：

func main() {
 ...
 // Routes.
 router.Load(
 // Cores.
 g,

 // Middlwares.
 middleware.RequestId(),
)
 ...
}

main 函数调⽤ router.Load()，函数 router.Load() 最终调
⽤ g.Use() 加载该中间件。

⽇志记录请求

同样，需要先实现⽇志请求中间件 middleware.Logging()，然
后在 main 函数中通过 g.Use() 加载该中间件：

func main() {
 ...
 // Routes.
 router.Load(
 // Cores.
 g,

 // Middlwares.
 middleware.Logging(),
)
 ...
}

middleware.Logging() 实现稍微复杂点，读者可以直接参考源
码实现：demo08/router/middleware/logging.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo08//router/middleware/logging.go)

这⾥有⼏点需要说明：

1. 该中间件需要截获 HTTP 的请求信息，然后打印请求信息，因
为 HTTP 的请求 Body，在读取过后会被置空，所以这⾥读取
完后会重新赋值：

var bodyBytes []byte
if c.Request.Body != nil {
 bodyBytes, _ = ioutil.ReadAll(c.Request.Body)
}

// Restore the io.ReadCloser to its original
state
c.Request.Body =
ioutil.NopCloser(bytes.NewBuffer(bodyBytes))

2. 截获 HTTP 的 Response 更麻烦些，原理是重定向 HTTP 的

https://github.com/lexkong/apiserver_demos/blob/master/demo08//router/middleware/logging.go

Response 到指定的 IO 流，详⻅源码⽂件。
3. 截获 HTTP 的 Request 和 Response 后，就可以获取需要的
信息，最终程序通过 log.Infof() 记录 HTTP 的请求信息。

4. 该中间件只记录业务请求，⽐如 /v1/user 和 /login 路径。

编译并测试

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略
此步骤）

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo08 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo08
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ gofmt -w .
$ go tool vet .
$ go build -v .

测试 middleware.RequestId() 中间件

发送 HTTP 请求 —— 查询⽤户列表：

可以看到，HTTP 返回的 Header 有 32 位的 UUID：X-Request-
Id: 1f8b1ae2-8009-4921-b354-86f25022dfa0。

测试 middleware.Logging() 中间件

在 API ⽇志中，可以看到有 HTTP 请求记录：

⽇志记录了 HTTP 请求的如下信息，依次为：

1. 耗时
2. 请求 IP
3. HTTP ⽅法 HTTP 路径
4. 返回的 Code 和 Message

⼩结

本⼩节通过具体实例展示，如何通过 gin 的 middleware 特性来对
HTTP 请求进⾏必要的逻辑处理。下⼀⼩节即是基于 gin 中间件实现
的。

