
⽤ HTTPS 加密 API 请求
本节核⼼内容

介绍 HTTPS 基本原理
介绍如何⽤ HTTPS 加密 API 请求，并测试加密效果

本⼩节源码下载路径：demo10
(https://github.com/lexkong/apiserver_demos/tree/master/demo10)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo09
(https://github.com/lexkong/apiserver_demos/tree/master/demo09)
来开发的。

什么是 HTTPS

在前⾯的⼩节中，客户端与 API 服务器请求响应⽤的是 HTTP，不过
HTTP 是明⽂的，在⽹络上进⾏传输可能会被窃听、篡改甚⾄冒充，
因此对于⼀个企业级的 API 服务器来说，通常需要采⽤更安全的
HTTPS 协议。

HTTPS（全称 Hyper Text Transfer Protocol over Secure Socket
Layer），是以安全为⽬标的 HTTP 通道，简单讲是 HTTP 的安全
版。即 HTTP 下加⼊ SSL 层，HTTPS 的安全基础是 SSL，因此加密
的详细内容就需要 SSL。

https://github.com/lexkong/apiserver_demos/tree/master/demo10
https://github.com/lexkong/apiserver_demos/tree/master/demo09

SSL：安全套接层，是 Netscape 公司设计的主要⽤于
Web 的安全传输协议。这种协议在 Web 上获得了⼴泛
的应⽤。通过证书认证来确保客户端和⽹站服务器之间
的通信数据是加密安全的。

TLS 是 SSL 的升级版，使⽤层⾯，读者可以理解为⼆者
⽆区别。

HTTPS 的实现原理

HTTPS 在传输数据之前需要客户端（浏览器）与服务端（⽹站）之
间进⾏⼀次握⼿，在握⼿过程中将确⽴双⽅加密传输数据的密码信
息。

有两种基本的加解密算法类型：

1. 对称加密：密钥只有⼀个，加密解密为同⼀个密码，且加解密
速度快，典型的对称加密算法有 DES、AES 等。

2. ⾮对称加密：密钥成对出现（且根据公钥⽆法推知私钥，根据
私钥也⽆法推知公钥），加密解密使⽤不同密钥（公钥加密需
要私钥解密，私钥加密需要公钥解密），相对对称加密速度较
慢，典型的⾮对称加密算法有 RSA、DSA 等。

下图是 HTTPS 的通信过程：

流程⼤概是这样的：

1. SSL 客户端通过 TCP 和服务器建⽴连接之后（443 端⼝），
并且在⼀般的 TCP 连接协商（握⼿）过程中请求证书。

即客户端发出⼀个消息给服务器，这个消息⾥⾯包含了⾃⼰可
实现的算法列表和其它⼀些需要的消息，SSL 的服务器端会回
应⼀个数据包，这⾥⾯确定了这次通信所需要的算法，然后服
务器向客户端返回证书。（证书⾥⾯包含了服务器信息 ——
域名、申请证书的公司、公共秘钥。）

2. 客户端在收到服务器返回的证书后，判断签发这个证书的公共
签发机构，并使⽤这个机构的公共秘钥确认签名是否有效，客
户端还会确保证书中列出的域名就是它正在连接的域名。

3. 如果确认证书有效，那么⽣成对称秘钥并使⽤服务器的公共秘
钥进⾏加密。然后把它发送给服务器，服务器使⽤它的私钥解
密出会话密钥，然后把内容通过会话密钥对称加密，这样两台
计算机可以开始进⾏对称加密进⾏通信。

HTTPS 通信的优点：

1. 客户端产⽣的密钥只有客户端和服务器端能得到；
2. 加密的数据只有客户端和服务器端才能得到明⽂；
3. 客户端到服务端的通信是安全的。

Go 语⾔ HTTPS ⽀持

Go 语⾔的 net/http 包中的 ListenAndServeTLS() 函数提供
了对 HTTPS 的⽀持。ListenAndServeTLS() 函数的原型为：

func ListenAndServeTLS(addr string, certFile
string, keyFile string, handler Handler) error

可以看出，这个函数原型其实和 HTTP ⽅式的差别就在于，需要提
供数字证书 certFile 和私钥⽂件 keyFile。在测试环境，我们没有必
要花钱去购买什么证书，利⽤ OpenSSL ⼯具，我们可以⾃⼰⽣成私
钥⽂件和⾃签发的数字证书。

API Server 添加 HTTPS ⽀持

在 apiserver 中添加 HTTPS 功能，步骤很简单，⼤概分为以下三
步。

1. ⽣成私钥⽂件（server.key）和⾃签发的数字证书
（server.crt）：

$ openssl req -new -nodes -x509 -out
conf/server.crt -keyout conf/server.key -days
3650 -subj "/C=DE/ST=NRW/L=Earth/O=Random
Company/OU=IT/CN=127.0.0.1/emailAddress=xxxxx@qq.
com"

2. 在配置⽂件中配置私钥⽂件、数字证书⽂件的路径和 HTTPS
端⼝，供 ListenAndServeTLS() 函数调⽤：

3. 在 main 函数中增加 ListenAndServeTLS() 调⽤，启动
HTTPS 端⼝：

main 函数的逻辑是：如果提供了 TLS 证书和私钥则启动 HTTPS 端
⼝。

创建证书和密钥需要 Linux 安装 openssl ⼯具，⼤部
分 Linux 发⾏版已经默认安装，如果没有安装请安装。

编译并测试

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略
此步骤）

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo10 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo10/
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ gofmt -w .
$ go tool vet .
$ go build -v .

请求时不携带 CA 证书和私钥

$ curl -XGET -H "Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE1
MjgwMTY5MjIsImlkIjowLCJuYmYiOjE1MjgwMTY5MjIsInVzZ
XJuYW1lIjoiYWRtaW4ifQ.LjxrK9DuAwAzUD8-
9v43NzWBN7HXsSLfebw92DKd1JQ" -H "Content-Type:
application/json" https://127.0.0.1:8081/v1/user

curl: (60) Peer certificate cannot be
authenticated with known CA certificates
More details here:
http://curl.haxx.se/docs/sslcerts.html

curl performs SSL certificate verification by
default, using a "bundle"
 of Certificate Authority (CA) public keys (CA
certs). If the default
 bundle file isn't adequate, you can specify an
alternate file
 using the --cacert option.
If this HTTPS server uses a certificate signed by
a CA represented in
 the bundle, the certificate verification
probably failed due to a
 problem with the certificate (it might be
expired, or the name might
 not match the domain name in the URL).
If you'd like to turn off curl's verification of
the certificate, use
 the -k (or --insecure) option.

可以看到请求认证失败。

请求协议需要是 HTTPS，请求的端⼝需要是 HTTPS 的
8081 端⼝。

请求时携带 CA 证书和私钥

$ curl -XGET -H "Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE1
MjgwMTY5MjIsImlkIjowLCJuYmYiOjE1MjgwMTY5MjIsInVzZ
XJuYW1lIjoiYWRtaW4ifQ.LjxrK9DuAwAzUD8-
9v43NzWBN7HXsSLfebw92DKd1JQ" -H "Content-Type:
application/json" https://127.0.0.1:8081/v1/user
--cacert conf/server.crt --cert conf/server.crt -
-key conf/server.key

{
 "code": 0,
 "message": "OK",
 "data": {
 "totalCount": 1,
 "userList": [
 {
 "id": 0,
 "username": "admin",
 "sayHello": "Hello qybyTdSmg",
 "password":
"$2a$10$veGcArz47VGj7l9xN7g2iuT9TF21jLI1YGXarGzvA
RNdnt4inC9PG",
 "createdAt": "2018-05-28 00:25:33",
 "updatedAt": "2018-05-28 00:25:33"
 }
]
 }
}

成功请求。

⼩结

本⼩节是 API 开发的进阶内容，讲解了如何给 HTTP 请求进⾏数据
加密。在企业级的 API 服务器中，通常会进⾏ HTTPS 加密。

