Fd HTTPS 1128 APl 13K
AFRODAS

HTTPS EANEIE
ZO{al A HTTPS A02% APl 53K, FHMXINZ MR

e N4
e I

*b \N\

NTTIRIS T # KT demol0

(https://github.com/lexkong/apiserver demos/tree/ma

A5 N EIRIBEIAR, SEIRIBEREENT, BFL
%o

ANWHHREEET demo09
(https://github.com/lexkong/apiserver_demos/tree/ma:

TR RY,

H42 HTTPS

FERIEN/NTH, EFIHES APl REZ231E5KIINENZ HTTP, A~ I
HTTP 2BEXHY, 7EMLE J:L?i’1§flﬁﬁu_]ﬁb/z§%}§1’rﬁuﬁ\ ENEEETR,
FELExS F— 1R A APl fRSZ233K1%, TEXRAELZEN
HTTPS Uhxo

HTTPS (Z£#R Hyper Text Transfer Protocol over Secure Socket
Layer) , L2 HBIRAI HTTP BE, BBiHE HTTP %2
ke, BN HTTP A0 SSL &, HTTPS B9& £ &2 SSL, Hithinzs
I HEASMEZR SSL,

https://github.com/lexkong/apiserver_demos/tree/master/demo10
https://github.com/lexkong/apiserver_demos/tree/master/demo09

SSL: L2 EIZE, = Netscape AFRITHEERTF
Web NZZEHMN, XMIINE Web EIRFTT 02
RIN A, BT UEBIAUERIERE F im0 R U5 AR 55 28 < 18]
HBESIERNEBERE/,

TLS /2 SSL B9F+Zkhi, {EREE, EER UEEN_F
F X5,

HTTPS Y HIE

HTTPS EEHEBE IR RS Fin (N5i48) SRS (M) 2

[B#IT—IRIEF, EEFIREFRILING NZERAIENEBE
=

1IN O

AR A AR R B A

1. XN BERE—, NEBEZRANE—TZE, BINEES
REMR, HBEFNIRINZEEH DES. AES &,

2. IEXIFINE: BEMN LM (BRFELAITEHEANTAHE, RIE
MIBEITERIATE) , IEERERAEEHR (RPNBE
EMABER, DANBFERAER) , BAINRNERER
i€, HBRIIEXMINEEIEE RSA. DSA &,

TEIZ HTTPS fU@Ed#=:

E i CEEEE) AR5 i

|
| 1: R hitp s 40 |

K—— — — CERE R — — —
2 PR (RATR) RO

g

3 R AR RE AN O

ﬂ

4 R EINE BRI RO tlj

Mz A2 XA

1. SSL EFim@id TCP MIfRSZ 232 EEZE (443 iwO) ,
HETE—RH TCP ZEigHE (EF) IREAEXKIESR.

BlEFimsb—THRSARSE, XTEREEEETECSH
SMNERIIRMEE-—LEFEEE, SSL RS H[In=
N—7EEE, XEERE T XXBEMBEENEE, AER
SemEFIHREIER, (EREEEZTRSSER —
g2, FIBIEBNAS.. AHMWHAE,)

2. EFImERRIRSFREMNIER/E, AIMERXMEBRIAHE
FHRIM, AMERXMMIMNAXMBRINZRESER, &
Fimd =B RIERFT LR ME E© EEERNER,

3. MIRMEAMEBRBR, AL FRMIAFERIRS AT
HETINE, AREERELRSE, RSFEFERTLIAR
AR, REEATEIRERHNMINE, XEma

T ENL A U e TR I Z#ITEE.

HTTPS B@EHNHA:

1. EF W ERNERREEF mlk
2. MNEBVEER B B imfl AR S5 28l
3. EFmERSimIBEELEMN,

Go iFE HTTPS XiF

ét&)?r

Go IE=M net/http B9 ListenAndServeTLS() REIR{H
733 HTTPS B9324%5. ListenAndServeTLS() REMHIERE Y :

func ListenAndServeTLS(addr string, certFile
string, keyFile string, handler Handler) error

AIUAEL, XTRBRBESIH HTTP AXNNEANMET, TER
HREFET certFile FIFATASIM keyFile, MM, FALRB L
B EWE AT, FIF OpenSSL TH, FHf1eIAE2E/TA
XM BZ RN FIES,

API Server 0 HTTPS 235

7£ apiserver 75 A0 HTTPS Thee, T BEEER, Ko AUNT=
&

1. RFEAXE (server.key) FIBZEEHEFIED

(server.crt) :

$ openssl req -new -nodes -x509 -out
conf/server.crt -keyout conf/server.key -days
3650 -subj "/C=DE/ST=NRW/L=Earth/0=Random
Company/0U=IT/CN=127.0.0.1/emailAddress=xxxxx@qq.

com

[api@centos apiserver]$ ls conf
config.yaml | server.crt server.key

[api@centos apiserveris =

2. HEEEEXHPEENIAXXH. FIEH I HTTPS
w0, 1 ListenAndServeTLS(Q) RE0ER:

runmode: debug # ., debug, release, test
addr # HTTPHE:]
name: apiserver # API Server([f$ T
url: http:// : # pingServerpRI i RIFAPLIK %545 ¥ip:port
max_ping_count # pingServer& Htry(t) kBl
jwt_secret: Rtg8BPKNEf2mB4mgvKONGPZZQSalWNLijxR42qRgq0iBb5
tls
addr
cert: conf/server.crt
key: conf/server.key

3. 7 main RREPIEHN ListenAndServeTLSO) ER, B5h
HTTPS ix[O:

// Ping the server to make sure the router is working.
go func() {
if err := pingServer(); err != i
log.Fatal(
1
log.Info(
O

// Start to listening the incoming requests.
cert := viper.GetString()
key := viper.GetString()
if cert != && key != {
go func() {
log.Infof(, viper.GetString(
log.Info(http.ListenAndServeTLS (viper.GetString(). cert, key, g).Error())
10
}

log.Infof(, viper.GetString(
log.Info(http.ListenAndServe(viper.GetString(). g).Error())

main REANEHEE: WREMT TLS IEBMFAEANSEN HTTPS s
[] o

BIFIEPAZ AT E Linux &3 openssl TH, KiB
73 Linux RITREZII LR, MRRBLRRKIBRE,

G iEF MR

1. & apiserver_demos 812 E (WBIEEZE FEE, 52
L IE)

$ git clone
https://github.com/lexkong/apiserver_demos

2. J% apiserver_demos/demol0 £l
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demol@/
$GOPATH/src/apiserver

3. 7 apiserver BE FRIFREIG

$ cd $GOPATH/src/apiserver

$ gofmt -w .
$ go tool vet .
$ go build -v .

BRI HETF CA IEHMFALH

$ curl -XGET -H "Authorization: Bearer
eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyIpYXQiOjEL
MjgwMTY5MjIsImlkIjowLCIuYmYiOjEIMjgwMTY5MjIsInVzZ
XJuYW11IjoiYWRtaW4ifQ.LjxrK9DuAwAzUDS-
Ov43NzWBN7HXsSLfebw92DKd1JQ" -H "Content-Type:
application/json" https://127.0.0.1:8081/v1/user

curl: (60) Peer certificate cannot be
authenticated with known CA certificates
More details here:
http://curl.haxx.se/docs/sslcerts.html

curl performs SSL certificate verification by
default, using a "bundle"

of Certificate Authority (CA) public keys (CA
certs). If the default

bundle file 1sn't adequate, you can specify an
alternate file

using the --cacert option.

If this HTTPS server uses a certificate signed by
a CA represented in

the bundle, the certificate verification
probably failed due to a

problem with the certificate (it might be
expired, or the name might

not match the domain name in the URL).

If you'd like to turn off curl's verification of
the certificate, use

the -k (or --insecure) option.

I ARRNEXRIANER,

BEXRNEER HTTPS, EXKNIFEOFEEZ HTTPS #Y
8081 i,

ERIHET CA IEHMTAH

$ curl -XGET -H "Authorization: Bearer
eyJhbGc101JIUzIIN1IsInR5cCI6IkpXVCI9.eyJpYXQi0jEL
M7jgwMTY5MjIsImlkIjowLCIJuYmY1i0jEIMjgwMTY5MjIsInVzZ
XJuYW11IjoiYWRtaW41ifQ.LjxrK9DuAwAzUDS8-
Ov43NzWBN7HXsSLfebw92DKd1JQ" -H "Content-Type:
application/json" https://127.0.0.1:8081/v1/user
--cacert conf/server.crt --cert conf/server.crt -
-key conf/server.key

{
"code": 0,
"message”: "OK",
"data": {

"totalCount”: 1,
"userList": [

{
"id": 0,
"username": "admin",
"sayHello": "Hello qybyTdSmg",
"password" :

"$2a$10%veGcArz47VGj719xN7g21uT9TF21jLI1YGXarGzvA
RNdnt41nCOPG",
"createdAt": "2018-05-28 00:25:33",
"updatedAt": "2018-05-28 00:25:33"

RRIMERK

RV~

A2 APl FRBAMAS, HEE 7TUfel2e HTTP 15K IF1TEGE
mnes, ALY APl fRSB23H, BESHT HTTPS 02,

