
基于 Nginx 的 API 部署⽅案
本节核⼼内容

介绍 Nginx
介绍如何安装 Nginx
介绍如何配置 Nginx

本⼩节源码下载路径：demo14
(https://github.com/lexkong/apiserver_demos/tree/master/demo14)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo13
(https://github.com/lexkong/apiserver_demos/tree/master/demo13)
来开发的。

Nginx 介绍

Nginx 是⼀个⾃由、开源、⾼性能及轻量级的 HTTP 服务器和反向
代理服务器，它有很多功能，主要功能为：

1. 正向代理
2. 反向代理
3. 负载均衡
4. HTTP 服务器（包含动静分离）

本⼩册使⽤了 Nginx 反向代理和负载均衡的功能。

https://github.com/lexkong/apiserver_demos/tree/master/demo14
https://github.com/lexkong/apiserver_demos/tree/master/demo13

Nginx 的更详细介绍可以参考 nginx简易教程
(https://www.cnblogs.com/jingmoxukong/p/5945200.html)

Nginx 反向代理功能

Nginx 最常⽤的功能之⼀是作为⼀个反向代理服务器。反向代理
（Reverse Proxy）是指以代理服务器来接收 Internet 上的连接请
求，然后将请求转发给内部⽹络上的服务器，并将从服务器上得到的
结果返回给 Internet 上请求连接的客户端，此时代理服务器对外就
表现为⼀个反向代理服务器（摘⾃百度百科）。

为什么需要反向代理呢？在实际的⽣产环境中，服务部署的⽹络（内
⽹）跟外部⽹络（外⽹）通常是不通的，需要通过⼀台既能够访问内
⽹⼜能够访问外⽹的服务器来做中转，这种服务器就是反向代理服务
器。Nginx 作为反向代理服务器，简单的配置如下：

https://www.cnblogs.com/jingmoxukong/p/5945200.html

 server {
 listen 80;
 server_name apiserver.com;
 client_max_body_size 1024M;

 location / {
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-Host
$http_host;
 proxy_set_header X-Real-IP
$remote_addr;
 proxy_set_header X-Forwarded-For
$proxy_add_x_forwarded_for;
 proxy_pass http://127.0.0.1:8080/;
 client_max_body_size 100m;
 }
 }

Nginx 在做反向代理服务器时，能够根据不同的配置规则转发到后
端不同的服务器上。

Nginx 负载均衡功能

Nginx 另⼀个常⽤的功能是负载均衡，所谓的负载均衡就是指当
Nginx 收到⼀个 HTTP 请求后，会根据负载策略将请求转发到不同
的后端服务器上。⽐如，apiserver 部署在两台服务器 A 和 B 上，
当请求到达 Nginx 后，Nginx 会根据 A 和 B 服务器上的负载情
况，将请求转发到负载较⼩的那台服务器上。这⾥要求 apiserver 是
⽆状态的服务。

安装和启动 Nginx（需要切换到 root ⽤
户）

1. 安装 Nginx（CentOS 7.x 安装流程）

$ yum -y install nginx

2. 确认 Nginx 安装成功

$ nginx -v

3. 启动 Nginx

$ systemctl start nginx

4. 设置开机启动

$ systemctl enable nginx

5. 查看 Nginx 启动状态

$ systemctl status nginx

Nginx 常⽤命令

Nginx 常⽤命令如下（执⾏ which nginx 可以找到 Nginx 命令所
在的路径）：

nginx -s stop 快速关闭 Nginx，可能不保存相关信
息，并迅速终⽌ Web 服务
nginx -s quit 平稳关闭 Nginx，保存相关信息，有安
排的结束 Web 服务
nginx -s reload 因改变了 Nginx 相关配置，需要重新
加载配置⽽重载
nginx -s reopen 重新打开⽇志⽂件
nginx -c filename 为 Nginx 指定⼀个配置⽂件，来代替
默认的
nginx -t 不运⾏，⽽仅仅测试配置⽂件。Nginx
将检查配置⽂件的语法的正确性，并尝试打开配置⽂件中所引⽤到
的⽂件
nginx -v 显示 Nginx 的版本
nginx -V 显示 Nginx 的版本、编译器版本和配
置参数

Nginx 默认监听 80 端⼝，启动 Nginx 前要确保 80 端
⼝没有被占⽤。当然你也可以通过修改 Nginx 配置⽂件
/etc/nginx/nginx.conf 改 Nginx 监听端⼝。

配置 Nginx 作为反向代理

假定要访问的 API 服务器域名为 apiserver.com，在
/etc/nginx/nginx.conf 配置 API 服务器的 server ⼊⼝：

完成 nginx.conf 内容如下：

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr -
$remote_user [$time_local] "$request" '
 '$status $body_bytes_sent
"$http_referer" '
 '"$http_user_agent"
"$http_x_forwarded_for"';

 access_log /var/log/nginx/access.log main;

 sendfile on;
 #tcp_nopush on;

 keepalive_timeout 65;

 #gzip on;

 include /etc/nginx/conf.d/*.conf;

 server {
 listen 80;
 server_name apiserver.com;
 client_max_body_size 1024M;

 location / {
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-Host
$http_host;
 proxy_set_header X-Real-IP
$remote_addr;
 proxy_set_header X-Forwarded-For
$proxy_add_x_forwarded_for;
 proxy_pass http://127.0.0.1:8080/;
 client_max_body_size 5m;

 }
 }
}

配置说明

由于 Nginx 默认允许客户端请求的最⼤单⽂件字节数为
1MB，实际⽣产环境中可能太⼩，所以这⾥将此限制改为
5MB（client_max_body_size 5m）
server_name：说明使⽤哪个域名来访问
proxy_pass：反向代理的路径（这⾥是本机的 API 服务，所
以IP为 127.0.0.1。端⼝要和 API 服务端⼝⼀致：8080）

如果需要上传图⽚之类的，可能需要设置成更⼤的值，
⽐如 50m。

因为 Nginx 配置选项⽐较多，跟实际需求和环境有关，
所以这⾥的配置是基础的、未经优化的配置，在实际⽣
产环境中，需要读者再做调节。

测试

1. 配置完 Nginx 后重启 Nginx

$ systemctl restart nginx

2. 在编译完 apiserver 后，启动 API 服务器

$./apiserver

3. 在 /etc/hosts 中添加⼀⾏：127.0.0.1 apiserver.com

4. 发送 HTTP 请求

$ curl -XGET -H "Content-Type: application/json"
-H "Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE1
MjgwMTY5MjIsImlkIjowLCJuYmYiOjE1MjgwMTY5MjIsInVzZ
XJuYW1lIjoiYWRtaW4ifQ.LjxrK9DuAwAzUD8-
9v43NzWBN7HXsSLfebw92DKd1JQ"
http://apiserver.com/v1/user

{
 "code": 0,
 "message": "OK",
 "data": {
 "totalCount": 1,
 "userList": [
 {
 "id": 0,
 "username": "admin",
 "sayHello": "Hello Jypl3DSig",
 "password":
"$2a$10$veGcArz47VGj7l9xN7g2iuT9TF21jLI1YGXarGzvA
RNdnt4inC9PG",
 "createdAt": "2018-05-28 00:25:33",
 "updatedAt": "2018-05-28 00:25:33"
 }
]
 }
}

可以看到成功通过代理访问后端的 API 服务。

请求流程说明

在⽤ curl 请求 http://apiserver.com/v1/user 后，后端的
请求流程实际上是这样的：

1. 因为在 /etc/hosts 中配置了 127.0.0.1
apiserver.com，所以请求
http://apiserver.com/v1/use 实际上是请求本机的
Nginx 端⼝（127.0.0.1:80）

2. Nginx 在收到请求后，解析到请求域名为 apiserver.com，
根据请求域名去匹配 Nginx 的 server 配置，匹配到
server_name apiserver.com 配置

3. 匹配到 server 后，把请求转发到该 server 的 proxy_pass
路径

4. 等待 API 服务器返回结果，并返回客户端

配置 Nginx 作为负载均衡

负载均衡的演示需要多个后端服务，为此我们在同⼀个服务器上启动
多个 apiserver，配置不同的端⼝（8080、8082），并采⽤ Nginx
默认的轮询转发策略（轮询：每个请求按时间顺序逐⼀分配到不同的
后端服务器）。

在 /etc/nginx/nginx.conf 中添加 upstream 配置：

配置说明

因为有多个后端，所以需要将之前固定的后端 proxy_pass
http://127.0.0.1:8080/ 换成具有多个后端的
apiserver.com（通过 upstream）
upstream 配置中配置多个后端（ip:port）

 upstream apiserver.com {
 server 127.0.0.1:8080;
 server 127.0.0.1:8082;
 }

测试

1. 配置完 Nginx 后重启 Nginx

$ systemctl restart nginx

2. 这⾥需要构建并发请求，编写测试脚本 test.sh，内容为：

#!/bin/bash

for n in $(seq 1 1 10)
do
 nohup curl -XGET -H "Content-Type:
application/json" -H "Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE1
MjgwMTY5MjIsImlkIjowLCJuYmYiOjE1MjgwMTY5MjIsInVzZ
XJuYW1lIjoiYWRtaW4ifQ.LjxrK9DuAwAzUD8-
9v43NzWBN7HXsSLfebw92DKd1JQ"
http://apiserver.com/v1/user &>/dev/null
done

3. 为了展示哪个 API 被调⽤，需要在查询⽤户列表的⼊⼝函数
（handler/user/list.go⽂件中的 List() 函数）中添加
⽇志打印信息：

4. 在相同服务器上启动两个不同的 HTTP 端⼝：8080 和 8082
5. 执⾏ test.sh 脚本

$./test.sh

观察 API ⽇志，可以看到请求被均衡地转发到后端的两个服务：

apiserver1（8080 端⼝）：

apiserver2（8082 端⼝）:

⼩结

在⽣产环境中，API 服务器所在的⽹络通常不能直接通过外⽹访问，
需要通过可从外⽹访问的 Nginx 服务器，将请求转发到内⽹的 API
服务器。并且随着业务规模越来越⼤，请求量也会越来越⼤，这时候
需要将 API 横向扩容，也需要 Nginx。所以在实际的 API 服务部署
中 Nginx 经常能派上⽤场。通过本⼩节的学习，读者可以了解到如
何在实际⽣产环境中部署 API 服务。

