
API 性能分析
作为开发，我们⼀般都局限在功能上的单元测试，对⼀些性能上的细
节我们往往没有去关注，如果我们在上线的时候对项⽬整体性能没有
⼀个全⾯的了解的话，当流量越来越⼤时，可能会出现各种各样的问
题，⽐如 CPU 占⽤⾼、内存使⽤率⾼等。为了避免这些性能瓶颈，
我们在开发的过程中需要通过⼀定的⼿段来对程序进⾏性能分析。

Go 语⾔已经为开发者内置配套了很多性能调优监控的好⼯具和⽅
法，这⼤⼤提升了我们 profile 分析的效率，借助这些⼯具我们可以
很⽅便地来对 Go 程序进⾏性能分析。在 Go 语⾔开发中，通常借助
于内置的 pprof ⼯具包来进⾏性能分析。

本节核⼼内容

如何⽤ pprof ⼯具对 API 程序进⾏性能分析

本⼩节源码下载路径：demo16
(https://github.com/lexkong/apiserver_demos/tree/master/demo16)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo15
(https://github.com/lexkong/apiserver_demos/tree/master/demo15)
来开发的。

pprof 是什么

https://github.com/lexkong/apiserver_demos/tree/master/demo16
https://github.com/lexkong/apiserver_demos/tree/master/demo15

PProf (https://github.com/google/pprof) 是⼀个 Go 程序性能
分析⼯具，可以分析 CPU、内存等性能。Go 在语⾔层⾯上集成了
profile 采样⼯具，只需在代码中简单地引⼊ runtime/ppro 或者
net/http/pprof 包即可获取程序的 profile ⽂件，并通过该⽂件
来进⾏性能分析。

runtime/pprof 还可以为控制台程序或者测试程序产⽣
pprof 数据。

其实 net/http/pprof 中只是使⽤ runtime/pprof 包来
进⾏封装了⼀下，并在 HTTP 端⼝上暴露出来。

使⽤ pprof

在 gin 中使⽤ pprof 功能，需要⽤到 github.com/gin-
contrib/pprof middleware，使⽤时只需要调⽤
pprof.Register() 函数即可。本例中，通过
在router/router.go中添加如下代码来实现（详⻅
demo16/router/router.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo16/router/router.go)

https://github.com/google/pprof
https://github.com/lexkong/apiserver_demos/blob/master/demo16/router/router.go

package router

import (
 "github.com/gin-contrib/pprof"

)

// Load loads the middlewares, routes, handlers.
func Load(g *gin.Engine, mw ...gin.HandlerFunc)
*gin.Engine {
 // pprof router
 pprof.Register(g)

}

编译

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略
此步骤）

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo16 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo16/
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ make

获取 profile 采集信息

通过 go tool pprof
http://127.0.0.1:8080/debug/pprof/profile，可以获取
profile 采集信息并分析。

也可以直接在浏览器访问
http://localhost:8080/debug/pprof 来查看当前 API 服务
的状态，包括 CPU 占⽤情况和内存使⽤情况等。

执⾏命令后，需要等待 30s，pprof 会进⾏采样。

性能分析

在上⼀⼩节我们介绍函数性能测试时已经介绍过性能分析的⼀部分知
识，为了使内容完整，我们这⾥再次介绍下相关知识。

通过上⼀部分我们已经获取到了程序的 profile 信息，并且进⼊到了
pprof 的交互界⾯，在交互界⾯执⾏ topN 可以获取采样信息。

通过 topN 的输出可以分析出哪些函数占⽤ CPU 时间⽚最多，这些
函数可能存在性能问题。性能分析详细防范请参考：

如果觉得不直观，可以直接⽣成函数调⽤图，通过调⽤图来判断哪些
函数耗时最久，在 pprof 交互界⾯，执⾏ svg ⽣成 svg ⽂件。

⽤浏览器打开 profile001.svg：

框框最⼤的函数耗时⽐较久，说明函数可能存在性能问题。

确保系统已经安装 graphviz 命令。

⼩结

本节展示了如何对 API 服务进⾏性能分析，这⾥只是介绍了如何添
加性能分析⼊⼝和基本的流程。

