
⽣成 Swagger 在线⽂档
本节核⼼内容

如何给 API 添加 Swagger ⽂档功能
如何编写 API ⽂档

本⼩节源码下载路径：demo17
(https://github.com/lexkong/apiserver_demos/tree/master/demo17)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo16
(https://github.com/lexkong/apiserver_demos/tree/master/demo16)
来开发的。

背景

开发 API 服务，API ⽂档必不可少，很多⼈选择⼿写 API ⽂档，⼿
写 API ⽂档有很多问题，⽐如⼯作量⼤、⼿写容易出错、更新麻
烦、格式不固定、维护困难等。所以在实际的开发中，建议⾃动⽣成
API ⽂档。

本⼩册所⽤的 API 服务器 RESTful 框架采⽤的是 gin，gin 在
GitHub 上有很多 middleware 可⽤，其中就有可以⾃动⽣成
Swagger ⽂档的 gin-swagger middleware。

https://github.com/lexkong/apiserver_demos/tree/master/demo17
https://github.com/lexkong/apiserver_demos/tree/master/demo16

Swagger 简介
Swagger 是⼀个强⼤的 API ⽂档构建⼯具，可以⾃动为 RESTful
API ⽣成 Swagger 格式的⽂档，可以在浏览器中查看 API ⽂档，也
可以通过调⽤接⼝来返回 API ⽂档（JSON 格式）。Swagger 通常
会展示如下信息：

1. HTTP ⽅法（GET、POST、PUT、DELETE 等）
2. URL 路径
3. HTTP 消息体（消息体中的参数名和类型）
4. 参数位置
5. 参数是否必选
6. 返回的参数（参数名和类型）
7. 请求和返回的媒体类型

Swagger 还有⼀个强⼤的功能：可以通过 API ⽂档描述的参数来构
建请求，测试 API。

浏览器访问截图：

JSON 返回截图：

Swagger 配置步骤

我们⽤ gin-swagger (https://github.com/swaggo/gin-
swagger) gin middleware来⽣成 Swagger API ⽂档。步骤如下：

1. 安装 swag 命令

$ mkdir -p $GOPATH/src/github.com/swaggo
$ cd $GOPATH/src/github.com/swaggo
$ git clone https://github.com/swaggo/swag
$ cd swag/cmd/swag/
$ go install -v

因为该包引⽤ golang.org 中的包，⽽⽹络环境原因，
⼀般很难连上 golang.org，所以这⾥不采⽤ go get
⽅式安装。

swag 的依赖包已经包含在第 4 节的 vendor 包下。

2. 进⼊ apiserver 根⽬录执⾏ swag init

https://github.com/swaggo/gin-swagger

$ cd $GOPATH/src/apiserver
$ swag init

3. 下载 gin-swagger

$ cd $GOPATH/src/github.com/swaggo
$ git clone https://github.com/swaggo/gin-swagger

4. 在 router/router.go 中添加 swagger 路由（详⻅
demo17/router/router.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo17/router/router.go)

![](https://user-gold-
cdn.xitu.io/2018/6/18/1640f3fac8635ff0?
w=2164&h=1259&f=jpeg&s=196291)

5. 编写 API 注释，Swagger 中需要将相应的注释或注解编写到⽅
法上，再利⽤⽣成器⾃动⽣成说明⽂件

这⾥⽤创建⽤户 API 来举例，其它 API 请参考
demo17/handler/user
(https://github.com/lexkong/apiserver_demos/tree/master/demo17/handler/user)
下的 API ⽂件。

https://github.com/lexkong/apiserver_demos/blob/master/demo17/router/router.go
https://github.com/lexkong/apiserver_demos/tree/master/demo17/handler/user

package user

import (
 ...
)

// @Summary Add new user to the database
// @Description Add a new user
// @Tags user
// @Accept json
// @Produce json
// @Param user body user.CreateRequest true
"Create a new user"
// @Success 200 {object} user.CreateResponse "
{"code":0,"message":"OK","data":
{"username":"kong"}}"
// @Router /user [post]
func Create(c *gin.Context) {
 ...
}

6. 执⾏ swag init，在 apiserver 根⽬录下⽣成 docs ⽬录

$ swag init

⽂档语法说明

Summary：简单阐述 API 的功能
Description：API 详细描述
Tags：API 所属分类
Accept：API 接收参数的格式
Produce：输出的数据格式，这⾥是 JSON 格式

Param：参数，分为 6 个字段，其中第 6 个字段是可选的，各
字段含义为：

1. 参数名称
2. 参数在 HTTP 请求中的位置（body、path、query）
3. 参数类型（string、int、bool 等）
4. 是否必须（true、false）
5. 参数描述
6. 选项，这⾥⽤的是 default() ⽤来指定默认值

Success：成功返回数据格式，分为 4 个字段

1. HTTP 返回 Code
2. 返回数据类型
3. 返回数据模型
4. 说明

路由格式，分为 2 个字段：

1. API 路径
2. HTTP ⽅法

API ⽂档编写规则请参考 See Declarative Comments
Format
(https://swaggo.github.io/swaggo.io/declarative_comments_format/)

API ⽂档有更新时，要重新执⾏ swag init 并重新编译
apiserver。

编译并运⾏

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略
此步骤）

https://swaggo.github.io/swaggo.io/declarative_comments_format/

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo17 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo17/
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ make

执⾏ ./apiserver 启动 apiserver 后，在浏览器中打开：
http://localhost:8080/swagger/index.html 访问
Swagger 2.0 API⽂档。

API 总览：

点击 /login，查看 login API 详情：

⼩结

本⼩节介绍了如何⽣成 Swagger ⽂档，并演示了具体的效果。本⼩
节也是动⼿操作的最后⼀个⼩节，⾄此恭喜你成功构建了⼀个企业级
的 API 服务器，demo17
(https://github.com/lexkong/apiserver_demos/tree/master/demo17)
即为此 API 服务器的最终源码。

https://github.com/lexkong/apiserver_demos/tree/master/demo17

