
API 性能测试和调优
本节核⼼内容

简单介绍 API 性能测试知识
介绍如何进⾏ API 性能测试
简单介绍如何进⾏ API 性能分析
给出 apiserver 的性能数据

本节最后会给出性能测试脚本：wrktest.sh，脚本⻅
demo17/wrktest.sh

性能测试

在 API 上线之前，我们需要知道 API 的性能，以便知道 API 服务器
所能承载的最⼤请求量、性能瓶颈，再根据业务的需求量来对 API
进⾏性能调优或者扩缩容。通过这些可以使 API 稳定地对外提供服
务，并且请求在合理的时间内返回。

API 性能测试指标

API 性能测试，⼤的⽅⾯包括 API 框架的性能和指定 API 的性能，
因为指定 API 的性能跟该 API 具体的实现有关，⽐如有⽆数据库连
接，有⽆复杂的逻辑处理等，脱离了具体实现来探讨单个 API 的性
能是毫⽆意义的，所以本⼩节只探讨 API 框架的性能。

衡量 API 性能的指标主要有 3 个：

1. 并发数（Concurrent）

并发数是指某个时间范围内，同时正在使⽤系统的⽤户个数。

⼴义上的并发数是指同时使⽤系统的⽤户个数，这些⽤户可能
调⽤不同的 API。严格意义上的并发数是指同时请求同⼀个
API 的⽤户个数。本⼩节所讨论的并发数是严格意义上的并发
数。

2. 每秒查询数（QPS）

每秒查询数 QPS 是对⼀个特定的查询服务器在规定时间内所处
理流量多少的衡量标准。

QPS = 并发数 / 平均请求响应时间。

3. 请求响应时间（TTLB）

请求响应时间指的是从客户端发出请求到得到响应的整个时
间。这个过程从客户端发起的⼀个请求开始，到客户端收到服
务器端的响应结束。在⼀些⼯具中，请求响应时间通常会被称
为 TTLB（Time to last byte，意思是从发送⼀个请求开始，
到客户端收到最后⼀个字节的响应为⽌所消费的时间）。请求
响应时间的单位⼀般为"秒”或“毫秒”。

衡量 API 性能的最主要指标是 QPS，但是在说明 QPS 时，需要指明
是多少并发数下的 QPS，否则毫⽆意义，因为不同并发数下的 QPS
是不同的。⽐如单⽤户 100 QPS 和 100 ⽤户 100 QPS 是两个不同
的概念，前者说明 API 可以在⼀秒内串⾏执⾏ 100 个请求，⽽后者
说明在并发数为 100 的情况下，API 可以在⼀秒内处理 100 个请
求。当 QPS 相同时，并发数越⼤，说明 API 性能越好，并发处理能
⼒越强。

在并发数设置过⼤时，API 同时要处理很多请求，会频繁切换进程，
⽽真正⽤于处理请求的时间变少，使得 QPS 反⽽会降低。并发数设
置过⼤时，请求响应时间也会变⼤。API 会有⼀个合适的并发数，在

该并发数下，API 的 QPS 可以达到最⼤，但该并发数不⼀定是最佳
并发数，还要参考该并发数下的平均请求响应时间。

API 性能测试⽅法

Linux 下有很多 Web 性能测试⼯具，常⽤的有 Jmeter、AB、
Webbench 和 Wrk。每个⼯具都有⾃⼰的特点，本⼩节⽤ Wrk 来对
API 进⾏性能测试。Wrk ⾮常简单，安装⽅便，测试结果也相对专业
些，并且可以⽀持 Lua 脚本来创建更复杂的测试场景。

Wrk 安装

安装步骤如下（需要切换到 root ⽤户）：

1. Clone wrk repo

git clone https://github.com/wg/wrk

2. 执⾏ make和 make install 安装

make
cp ./wrk /usr/bin

Wrk 使⽤简介

Wrk 使⽤⽅法

Wrk 使⽤起来不复杂，执⾏ wrk --help 可以看到 wrk 的所有运
⾏参数：

$ wrk --help
Usage: wrk <options> <url>
 Options:
 -c, --connections <N> Connections to keep
open
 -d, --duration <T> Duration of test
 -t, --threads <N> Number of threads to
use

 -s, --script <S> Load Lua script file
 -H, --header <H> Add header to request
 --latency Print latency
statistics
 --timeout <T> Socket/request timeout
 -v, --version Print version details

 Numeric arguments may include a SI unit (1k,
1M, 1G)
 Time arguments may include a time unit (2s, 2m,
2h)

常⽤的参数为：

-t: 线程数（线程数不要太多，是核数的 2 到 4 倍即可，多了
反⽽会因为线程切换过多造成效率降低）
-c: 并发数
-d: 测试的持续时间，默认为 10s
-T: 请求超时时间
-H: 指定请求的 HTTP Header，有些 API 需要传⼊⼀些
Header，可通过 Wrk 的 -H 参数来传⼊
--latency: 打印响应时间分布
-s: 指定 Lua 脚本，Lua 脚本可以实现更复杂的请求

Wrk 结果解析

⼀个简单的测试如下：

$ wrk -t144 -c3000 -d30s -T30s --latency
http://127.0.0.1:8080/sd/health
Running 30s test @
http://127.0.0.1:8088/sd/health
 144 threads and 3000 connections
 Thread Stats Avg Stdev Max +/-
Stdev
 Latency 32.01ms 39.32ms 488.62ms
87.93%
 Req/Sec 1.00k 251.79 3.35k
69.00%
 Latency Distribution
 50% 25.05ms
 75% 55.36ms
 90% 78.45ms
 99% 166.76ms
 4329733 requests in 30.10s, 1.81GB read
 Socket errors: connect 0, read 5, write 0,
timeout 64
Requests/sec: 143850.26
Transfer/sec: 61.46MB

144 threads and 3000 connections: ⽤ 144 个线程模
拟 3000 个连接，分别对应 -t 和 -c 参数
Thread Stats： 线程统计

Latency: 响应时间，有平均值、标准偏差、最⼤值、正
负⼀个标准差占⽐
Req/Sec: 每个线程每秒完成的请求数, 同样有平均值、
标准偏差、最⼤值、正负⼀个标准差占⽐

Latency Distribution: 响应时间分布

50%: 50% 的响应时间为：4.74ms
75%: 75% 的响应时间为：23.42ms
90%: 90% 的响应时间为：82.88ms
99%: 99% 的响应时间为：236.39ms

19373531 requests in 30.10s, 1.35GB read: 30s
完成的总请求数（19373531）和数据读取量（1.35GB）
Socket errors: connect 0, read 5, write 0,
timeout 64: 错误统计
Requests/sec: QPS
Transfer/sec: TPS

apiserver 第⼀次性能测试

测试服务器配置：6 核 12G

在 apiserver 中，Gin middleware： Logging 会记录请求参数和
返回参数，该 middleare 很消耗性能，为了测试框架的性能，这⾥
暂时将该 middleware 禁掉，在 main.go 函数中将
middleware.Logging() ⼀⾏注释掉，如图：

编译并运⾏ apiserver

$ make
$./apiserver

执⾏ wrk 命令测试 API 性能（分别测试多个并发数：200 500
1000 3000 5000 10000 15000 20000 25000 50000
100000 200000 500000 1000000）

$ wrk --latency -t144 -d60s -T300s
http://127.0.0.1:8080/sd/health -c 200

调⽤ apiserver 的健康检查接⼝：/sd/health

根据测试数据绘制出 QPS & TTLB 图和成功率图：

QPS & 平均响应时间:

成功率

通过上⾯⼆图可以看到，apiserver 在并发数为 5000 时，QPS 最
⼤，为 146953，平均响应时间为 52.75ms，在并发数达到
50000 时，成功率开始下降。

那么该 apiserver 的 QPS 处于什么⽔平呢？⼀⽅⾯可以根据⾃⼰的
业务需要来对⽐，另⼀⽅⾯可以对⽐性能更好的 Web 框架。这⾥⽤
net/http 构建最简单的 HTTP 服务器，测试性能并作对⽐（相同
的测试⼯具和测试服务器），HTTP 服务源码为：

package main

import (
 "fmt"
 "log"
 "net/http"
)

func main() {
 http.HandleFunc("/", func(w
http.ResponseWriter, r *http.Request) {
 message := "OK"
 fmt.Fprintln(w, "\n"+message)
 })

 log.Fatal(http.ListenAndServe(":6667", nil))
}

可以看到该 HTTP 服务器很简单，只是利⽤ net/http 包最原⽣的
功能，在 Go 中⼏乎所有的 Web 框架都是基于 net/http 包封装
的，既然是封装，相对于原⽣的性能肯定有所不及，所以这⾥拿
net/http 直接启动的 HTTP 服务器来做对⽐，对⽐结果如下：

QPS & 平均响应时间对⽐

成功率对⽐

通过上⾯两个对⽐图可以看出，apiserver 在 QPS、响应时间和成功
率上都不如原⽣的 HTTP Server，特别是 QPS，最⼤ QPS 只有原⽣
HTTP Server 最⼤ QPS 的 22%，性能需要调优。

看到需要绘图，是不是觉得有点麻烦，不慌，笔者最后
会奉上⾃动化测试脚本，该脚本会⾃动解析 wrk 结果并
⽣成需要的图表。

apiserver 性能分析

API 性能分析涉及的范围⽐较⼴，本⼩节不是专⻔教读者
如何进⾏详细的性能分析的教程，这⾥仅仅展示性能分
析的步骤和基本思路。

在执⾏性能测试的过程中，运⾏ go tool pprof
http://127.0.0.1:8080/debug/pprof/profile，采集 30s
的性能数据并查看耗时⽐较久的 20 个函数：

(pprof) top20
Showing nodes accounting for 1.57mins, 52.96% of
2.97mins total
Dropped 510 nodes (cum <= 0.01mins)
Showing top 20 nodes out of 199
 flat flat% sum% cum cum%
 0.37mins 12.35% 12.35% 0.37mins 12.35%
runtime.futex
 0.28mins 9.49% 21.84% 0.30mins 10.02%
syscall.Syscall
 0.12mins 4.10% 25.95% 0.30mins 10.27%
runtime.lock
 0.12mins 4.09% 30.04% 0.30mins 10.05%
runtime.mallocgc
 0.12mins 3.98% 34.02% 0.12mins 3.98%
runtime.epollwait
 0.09mins 2.94% 36.96% 0.09mins 2.94%
runtime.usleep
 0.08mins 2.74% 39.70% 0.96mins 32.43%
runtime.findrunnable
 0.06mins 2.01% 41.71% 0.15mins 4.94%
runtime.runqgrab
 0.04mins 1.31% 43.03% 0.04mins 1.31%
runtime.memmove

 0.03mins 1.14% 44.17% 0.03mins 1.14%
runtime.heapBitsSetType
 0.03mins 1.12% 45.29% 0.07mins 2.20%
runtime.scanobject
 0.03mins 1.07% 46.36% 0.03mins 1.07%
runtime.procyield
 0.03mins 1.03% 47.39% 0.03mins 1.03%
crypto/sha256.block
 0.03mins 0.98% 48.38% 0.26mins 8.66%
runtime.unlock
 0.03mins 0.88% 49.26% 0.03mins 0.88%
runtime.greyobject
 0.02mins 0.82% 50.08% 0.02mins 0.82%
runtime.osyield
 0.02mins 0.76% 50.84% 0.02mins 0.76%
runtime.runqempty
 0.02mins 0.72% 51.56% 0.03mins 0.92%
runtime.step
 0.02mins 0.71% 52.27% 0.05mins 1.54%
runtime.mapassign_faststr
 0.02mins 0.69% 52.96% 0.14mins 4.73%
runtime.netpoll

在 go tool pprof
(https://github.com/hyper0x/go_command_tutorial/blob/master/0.12.md)
⽂章中，我们知道，在默认情况下，top 命令输出的列表中只包含本
地取样计数最⼤的前⼗个函数，统计的是这些函数本身运⾏的执⾏时
间，实际上我们还需要知道，函数中有没有调⽤耗时的函数以及执⾏
其它函数所耗费的时间，这种情况下我们需要按累积取样计数来排
序，这在 pprof 中需要加上 -cum 参数：

https://github.com/hyper0x/go_command_tutorial/blob/master/0.12.md

(pprof) top -cum
Showing nodes accounting for 6.38s, 3.58% of
178.08s total
Dropped 510 nodes (cum <= 0.89s)
Showing top 10 nodes out of 199
 flat flat% sum% cum cum%
 0.31s 0.17% 0.17% 104.25s 58.54%
net/http.(*conn).serve
 0.08s 0.045% 0.22% 63.81s 35.83%
net/http.serverHandler.ServeHTTP
 0.09s 0.051% 0.27% 63.73s 35.79%
vendor/github.com/gin-gonic/gin.
(*Engine).ServeHTTP
 0.15s 0.084% 0.35% 63.08s 35.42%
vendor/github.com/gin-gonic/gin.
(*Engine).handleHTTPRequest
 0.09s 0.051% 0.4% 60.25s 33.83%
runtime.mcall
 0.22s 0.12% 0.53% 59.60s 33.47%
vendor/github.com/gin-gonic/gin.(*Context).Next
 0.04s 0.022% 0.55% 59.58s 33.46%
vendor/github.com/gin-
gonic/gin.RecoveryWithWriter.func1
 0.50s 0.28% 0.83% 59.20s 33.24%
runtime.schedule
 0.02s 0.011% 0.84% 59.16s 33.22%
apiserver/router/middleware.NoCache
 4.88s 2.74% 3.58% 57.76s 32.43%
runtime.findrunnable

为了能够查看到所有函数的耗时排名，你需要列出更多
的函数（本⼩节列出了 top100）。

如果你对代码很熟悉，通过最后⼀列的函数名，你应该可以定位到程
序中所调⽤函数的位置，并进⾏优化。因为 top100 内容过多，这
⾥筛选程序中所调⽤的函数（顺序不变）。

Showing nodes accounting for 67.31s, 37.80% of
178.08s total
Dropped 510 nodes (cum <= 0.89s)
Showing top 50 nodes out of 199
 flat flat% sum% cum cum%
 0.31s 0.17% 0.17% 104.25s 58.54%
net/http.(*conn).serve
 0.08s 0.045% 0.22% 63.81s 35.83%
net/http.serverHandler.ServeHTTP
 0.09s 0.051% 0.27% 63.73s 35.79%
vendor/github.com/gin-gonic/gin.
(*Engine).ServeHTTP
 0.15s 0.084% 0.35% 63.08s 35.42%
vendor/github.com/gin-gonic/gin.
(*Engine).handleHTTPRequest
 0.09s 0.051% 0.4% 60.25s 33.83%
runtime.mcall
 0.22s 0.12% 0.53% 59.60s 33.47%
vendor/github.com/gin-gonic/gin.(*Context).Next
 0.04s 0.022% 0.55% 59.58s 33.46%
vendor/github.com/gin-
gonic/gin.RecoveryWithWriter.func1
 0.50s 0.28% 0.83% 59.20s 33.24%
runtime.schedule
 0.02s 0.011% 0.84% 59.16s 33.22%

apiserver/router/middleware.NoCache
 4.88s 2.74% 3.58% 57.76s 32.43%
runtime.findrunnable
 0.05s 0.028% 3.61% 56.76s 31.87%
runtime.park_m
 0.05s 0.028% 3.64% 56.72s 31.85%
apiserver/router/middleware.Options
 0.06s 0.034% 3.67% 55.32s 31.06%
apiserver/router/middleware.RequestId.func1
 0.07s 0.039% 3.71% 51.34s 28.83%
apiserver/router/middleware.AuthMiddleware.func1
 0.11s 0.062% 3.77% 51.17s 28.73%
apiserver/pkg/token.ParseRequest
 0.05s 0.028% 3.80% 26.59s 14.93%
apiserver/pkg/token.Parse
 0.07s 0.039% 3.84% 26.12s 14.67%
vendor/github.com/dgrijalva/jwt-go.Parse
 0.10s 0.056% 3.90% 26.05s 14.63%
vendor/github.com/dgrijalva/jwt-go.
(*Parser).Parse
 0.29s 0.16% 4.06% 25.84s 14.51%
vendor/github.com/dgrijalva/jwt-go.
(*Parser).ParseWithClaims
 ...
 0.05s 0.028% 36.28% 11.08s 6.22%
vendor/github.com/spf13/viper.GetString
 0.02s 0.011% 36.29% 11.03s 6.19%
vendor/github.com/spf13/viper.(*Viper).GetString
 0.12s 0.067% 36.36% 10.92s 6.13%
vendor/github.com/spf13/viper.(*Viper).Get

从上⾯，我们可以知道 apiserver 中函数耗时排名如下：

1. apiserver/router/middleware.NoCache: Gin
middleware，强制浏览器不使⽤缓存

2. apiserver/router/middleware.Options: Gin
middleware，跨域设置

3. apiserver/router/middleware.RequestId.func1:
Gin middleware，记录 RequestId

4. apiserver/router/middleware.AuthMiddleware.func1
Gin middleware，JWT 认证

5. apiserver/pkg/token.ParseRequest: Token 功能，
JWT 认证相关

6. apiserver/pkg/token.Parse: Token 功能，JWT 认证相
关

7. vendor/github.com/dgrijalva/jwt-go.Parse:
Token 功能，JW 认证相关

8. vendor/github.com/dgrijalva/jwt-go.
(*Parser).Parse: Token 功能，JWT 认证相关

9. vendor/github.com/dgrijalva/jwt-go.
(*Parser).ParseWithClaims: Token 功能，JWT 认证相
关

10. vendor/github.com/spf13/viper.GetString:
pkg/token/token.go 中获取 jwt_secret 的值

11. vendor/github.com/spf13/viper.
(*Viper).GetString: pkg/token/token.go 中获取
jwt_secret 的值

12. vendor/github.com/spf13/viper.(*Viper).Get:
pkg/token/token.go中获取 jwt_secret 的值

上⾯的列表中可以看到有 ServeHTTP 字样的函数，这些函数是
gin/http ⾃带的函数，需要的函数，⽆法进⾏优化，所以上述列表
没有列出。可以看到主要是 Gin middleware 耗时较久，这⾥处理
⽅法是删除不需要的 Gin middleware，删除 Middleware 如下：

1. middleware.RequestId（main.go ⽂件中）

2. middleware.NoCache 和
middleware.Options（router/router.go ⽂件中）

删除⽆⽤的 Gin middleware 重新编译 apiserver，启动
apiserver，测试性能后，再跟原⽣的 HTTP Server 对⽐，结果如
下。

QPS & 平均响应时间对⽐

成功率对⽐

可以看到删除⽆⽤ Gin middleware 后，apiserver 的性能有了很⼤
的提升，并发数为 25000 时，QPS 最⼤，为 553335（实际上并
发数为 50000 时依然能达到很⾼的 QPS: 538144），响应时间为
222.91ms，QPS 很⾼，是原⽣ HTTP Server 的 85.34%。成功率
基本跟原⽣的 HTTP Server ⼀致。优化后的 API 服务器可以⽀持很
⾼的并发，在 20w+ 的并发下，API 服务器请求成功率可以达到
99.16%。这些性能远远好于企业级 API 服务器的要求。

性能测试⾃动化

本⼩节的性能测试脚本请参考最终源码⽬录下的 wrktest.sh 脚
本。脚本⼤致流程是：先执⾏ wrk 测试，收集测试数据，格式化测
试数据，最后调⽤ gnuplot ⽣成图表。

确保系统安装了 gnuplot，如果没有安装，CentOS 系统中可通过如
下命令安装：

yum -y install gnuplot

附件：API 性能测试数据

原⽣的 HTTP Server 性能数据

并发数 QPS 平均响应时间(毫秒) 成功率

200 107975.55 2.18 100.00
500 387894.92 2.52 100.00
1000 512223.67 5.89 100.00
3000 599781.96 27.75 100.00
5000 623458.30 52.72 100.00
10000 640701.55 134.92 100.00
15000 644269.17 222.44 100.00
20000 646675.63 257.28 100.00
25000 648380.78 344.17 100.00
50000 642420.16 305.24 99.99
100000 572197.78 118.41 99.84
200000 372247.81 154.68 99.31
500000 110261.20 181.90 96.90
1000000 20954.71 198.87 83.15

优化前 apiserver 性能数据

并发数 QPS 平均响应时间(毫秒) 成功率

200 145651.44 1.28 100.00
500 143562.75 4.30 100.00
1000 144860.93 8.79 100.00
3000 147833.70 30.91 100.00
5000 146953.40 52.75 100.00
10000 144015.46 108.19 100.00
15000 140960.03 164.76 100.00
20000 140586.00 218.57 100.00
25000 140783.38 272.12 100.00
50000 139312.92 462.26 99.93
100000 127629.61 419.98 99.28
200000 90035.14 483.31 97.14
500000 25118.75 743.60 86.08
1000000 12304.60 819.44 71.78

优化后 apiserver 性能数据

并发数 QPS 平均响应时间(毫秒) 成功率

200 540539.65 0.44213 100.00
500 536362.78 1.89 100.00
1000 529081.92 5.61 100.00
3000 535506.99 30.00 100.00
5000 539251.92 55.10 100.00
10000 541375.64 131.69 100.00
15000 547164.96 127.14 100.00
20000 550434.18 282.16 100.00
25000 553335.38 222.91 100.00
50000 538144.69 174.27 99.98
100000 457695.17 130.28 99.80
200000 305915.69 193.37 99.16
500000 87672.39 241.65 96.14
1000000 20351.67 231.12 82.99

总结

本⼩节介绍了如何进⾏ API 的性能测试，并给出了本⼩册 apiserver
的性能数据，最后笔者附上了⾃⼰测试⽤的⾃动化测试脚本。

本⼩节介绍的是框架的性能，具体到某个接⼝的性能，因为影响因素
⽐较多，需要读者⾃⼰去优化，这⾥给出 HTTP 接⼝性能要求，供
读者在优化时参考。

| 指标名称 | 要求 | 优先级 |
| ----| ---- | ---- | ---- |
| 响应时间 | 500 ms | 1 |
| 请求成功率 | 99% | 2 |
| QPS | 在满⾜预期要求的情况下服务器状态稳定，单台服务器 QPS
要求在 1000+ | 3 |

