
基于 Matplotlib 实现数据可视化
上节我们介绍了 Pandas 的基本操作，这节我们使⽤ Pandas 结合
Matplotlib 对数据进⾏可视化展示。⾸先我们把数据加载到
Pandas，现在假设你已经拥有了数据，如果没有数据可以下载我给
你准备的JSON⽂件
(https://github.com/pythonzhichan/weixincrawler/blob/master/post.csv)

加载数据

启动 juypter notebook 之后基于Python3 新建⼀个 notebook，
之所以不选择叫 weixin 的 Python 解释器是因为默认的 Python3
已经包含了所有的数据分析相关包，⽆需另外下载。

在终端查看我的系统⾥有哪些虚拟环境

https://github.com/pythonzhichan/weixincrawler/blob/master/post.csv

conda info -e
conda environments:
#
crawler-toturial
/Users/lzjun/anaconda3/envs/crawler-toturial
crawler_test
/Users/lzjun/anaconda3/envs/crawler_test
weixin
/Users/lzjun/anaconda3/envs/weixin
root * /Users/lzjun/anaconda3

以上是我系统⾥⾯⽤ conda 管理的虚拟环境，juypter notebook
中的 Python3 对应的就是 root 环境，我们现在切换到 root 环境来
安装其它第三⽅包。

windows 不需要加 source
source activate root
安装 pymongo
pip install pymongo

回到 jupyter notebook ，导⼊基础包（以下代码都是在 jupyter
notebook 中完成）

加这⾏不需要再写plt.show()，直接显示图像出来
%matplotlib inline

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

display_columns =
["title","read_num","like_num","comment_num","rew
ard_num","p_date"]

从 MongoDB 导⼊数据

import pymongo
from pymongo import MongoClient
连接 mongodb
c = MongoClient()
cursor = c.weixin3['post'].find()
df = pd.DataFrame(list(cursor))

删除 "_id"列
df = df.drop("_id", axis=1)
重新设置列的顺序
df = df.reindex(columns=display_columns)
将p_date的数据类型从timestamp 转换成 datetime
df.p_date = pd.to_datetime(df['p_date'])
df.head()

前5条数据：

从 CSV ⽂件中导⼊

如果你的 MongoDB 没有数据，可以⽤我给你准备的JSON⽂件
(https://github.com/pythonzhichan/weixincrawler/blob/master/post.csv)
下载到本地后⽤ Pandas 导⼊进来

https://github.com/pythonzhichan/weixincrawler/blob/master/post.csv

从csv⽂件中加载
df = pd.read_csv("post.csv")
重新设置列的顺序
df = df.reindex(columns=display_columns)
将p_date的数据类型从timestamp 转换成 datetime
df.p_date = pd.to_datetime(df['p_date'])

⽂章与阅读数

数据加载到 Pandas 之后，先来看下数据的总体概览情况

从上⾯看出公众号⼀共发了 203 篇⽂章，⽂章平均阅读量是
2404，标准差 2005 说明⽂章阅读量波动⾮常⼤，从最⾼阅读量
8628 到最低阅读量 124 可以证明其波动性。为什么标准差这么⼤
呢？这个其实很容易说明，因为公众号初期订阅读者少，阅读量也不
⾼，但是随着你读者越来越多，阅读量也会越来越⾼。

这⾥的⽂章赞赏数和点赞数有⼀定的误差，因为我在初始化数据的时
候，给每篇⽂章赞赏数默认设置为了0，⽽正确的⽅式应该是设置为
None，如果为None 数据就不会统计进来。

获取阅读量最⾼的10篇⽂章

根据阅读数排序，ascending 表示降序排列
top_read_num_10 = df.sort_values(by=['read_num'],
ascending=False)[:10]
top_read_num_10 =
top_read_num_10[display_columns]
重置⾏索引，drop 表示删除原来的⾏索引
top_read_num_10.reset_index(drop=True)

历史⽂章阅读量变化曲线

ax = df.plot(y='read_num', x='p_date', title="⽂章
阅读量趋势",figsize=(9,6))
设置y轴标签
ax.set_ylabel("阅读量")
设置x轴标签
ax.set_xlabel("")
隐藏图例
ax.legend().set_visible(False)

⼀眼就看出来，阅读量都集中在 2017 这⼀年，那么前⼏年究竟发
⽣什么了？是没写⽂章还是写了⽂章没⼈看？我们来统计⼀下这⼏年
的⽂章数。

数据告诉我们，13年发了2篇⽂章（笑cry表情），⽽17年发了 149
篇⽂章（棒棒哒），平均每周⼤概有近 3 篇⽂章的更新频率，⽤柱
状图展示就是这样：

ax = year_df.plot(x='p_date', y='total',
kind='bar', figsize=(9,6), fontsize=15)
ax.set_ylabel("⽂章数")
ax.set_xlabel("")
ax.legend().set_visible(False)
柱状图上显示数字
for p in ax.patches:
 ax.annotate(str(p.get_height()), xy=
(p.get_x(), p.get_height()))

⽂章与赞赏

再来分析我们的⽂章赞赏情况

总共有101篇⽂章赞赏，平均两篇⽂章就有1次赞赏，读者⼀共贡献
了 518 次赞赏，谢谢可爱读者们⽀持（微笑表情）

⽤同样的⽅式可以得到⽂章赞赏数前10的数据：

top_reward_num = df.sort_values(by=
['reward_num'], ascending=False)[:10]
top_reward_num = top_reward_num[display_columns]
top_reward_num
top_reward_num.reset_index(drop=True)

最⾼的⼀篇⽂章有83个打赏，这究竟是⼀篇什么⽂章，戳-->⾃学
Python编程怎么学才不那么孤独 (http://mp.weixin.qq.com/s?
__biz=MjM5MzgyODQxMQ==&mid=2650367720&idx=1&sn=87e32a97392f320c17960c31f1035182&chksm=be9cddbc89eb54aa0277dd7e79acbb7fc44319156b0ec59ff9e9b30ffdac18489b10b663c7c2&scene=27#wechat_redirect)

ax = top_reward_num.plot(x='title',
 y='reward_num',
 kind='barh',
 figsize=(9,6),
 fontsize=14)
ax.set_ylabel("")
ax.set_xlabel("赞赏数")
ax.legend().set_visible(False)

这⾥的 kind ⽤ "barh" 表示横向的条形图

⽂章与点赞

说完赞赏的数据，再来看看点赞数与⽂章阅读数有什么关系，我们可
以⽤散点图来表示⼆者之间关系，散点图⽤两组数据构成多个坐标
点，表示因变量随⾃变量⽽变化的⼤致趋势。

http://mp.weixin.qq.com/s?__biz=MjM5MzgyODQxMQ==&mid=2650367720&idx=1&sn=87e32a97392f320c17960c31f1035182&chksm=be9cddbc89eb54aa0277dd7e79acbb7fc44319156b0ec59ff9e9b30ffdac18489b10b663c7c2&scene=27#wechat_redirect

散点图
ax = df.plot(kind="scatter", y='like_num',
x='read_num',s=10, figsize=(9,6), fontsize=15)
ax.set_xlabel("阅读量")
ax.set_ylabel("点赞数")

z = np.polyfit(df.read_num, df.like_num, 1)
p = np.poly1d(z)
plt.plot(df.read_num,p(df.read_num),"r--")

可以看出⽂章点赞数⼤部分集中在10~50之间，⽽且存在某种线性
正相关性，也就是说，⽂章阅读数越⾼，点赞数也就越⾼，如果某篇
⽂章阅读量很⾼，但是点赞数却很低，这样的⽂章是标题党或者是资
讯类的⽂章的可能性⽐较⼤。

标题关键字

最后，我想基于⽂章标题做⼀个词云效果展示，看看这些⽂章标题都
⽤了哪些关键字。这⾥需要⽤到另个包，⼀个是结巴分词，另⼀个词
云包

conda install jieba
conda install wordcloud

from wordcloud import WordCloud
import jieba

words = []
for i in df.title:
 seg_list = jieba.cut(i, cut_all=False)
 words.append(" ".join(seg_list))
wordcloud =
WordCloud(font_path='/Library/Fonts/Songti.ttc',
 background_color="white",
 max_words=80,).generate("
".join(words))
plt.figure(figsize=(9,6))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()

把所有⽂章的标题同结巴库分词处理加⼊到 words 列表中，传递给
WordCloud 组件，另外还需要指定⼀个中⽂字体，因为
wordcloud 默认⽆法处理中⽂。max_words ⽤于指定最多显示多
少词语

⼩结

到这⾥，我们就完成了⼀个公众号基本分析⼯作，得到⼀些结论，⽐
如阅读量⾼的往往不是某个具体的知识点⼲货内容，⽽是⼀些更通俗
的⽂章，要么是资讯，要么是⼀些⼯具介绍，或者是编程的⽅法论等
⽂章。⽽赞赏⽂章基本集中在带有福利的⽂章⾥⾯，从⽂章标题得知
公众号⽂章都是围绕Python写的⽂章。

本节ipynb源代码地
址：https://github.com/pythonzhichan/weixincrawler
(https://github.com/pythonzhichan/weixincrawler)

https://github.com/pythonzhichan/weixincrawler

