
将⽤户信息写⼊ MySQL 数据库
上两⼩节已完成逻辑代码，这⼩节将学习使⽤ ORM 的⽅式将⽤户注
册信息写⼊数据库中。

整个逻辑架构图

数据库的信息（如地址、端⼝、⽤户名和密码等）存放在 base.py
中，model.py 中定义了数据库表并从 base.py 中获取数据库信
息。当 main.py 启动时，其将调⽤ model.py 初始化数据库。⽽
users_views.py 负责将客户端的请求数据写⼊数据库中，并返回
注册成功信息。

配置数据⽤户名和密码

⽤户名为 root，密码为 pwd@demo，
在服务器端输⼊如下命令配置数据库。

mysql -u root
set password for 'root' @localhost =
password('pwd@demo');

创建数据库

在服务器端输⼊如下命令创建数据库。

CREATE DATABASE demo CHARACTER SET 'utf8' COLLATE
'utf8_general_ci';

创建完成后，使⽤ show databases 检查数据库是否创建成功。

代码中配置数据库

在配置⽂件 base.py 中指定数据库，需修改 conf/base.py，增
加如下代码：

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import
declarative_base
engine =
create_engine('mysql://root:pwd@demo@localhost:33
06/demo?charset=utf8', encoding="utf8",
echo=False)
BaseDB = declarative_base()

代码中定义数据库表

在前⾯的介绍中，我们提到，models.py 这个⽂件主要包含数据库
表的定义及初始化。从第 6 ⼩节中看到，⽤户注册信息包含⼿机
号、密码和验证码。这⾥需要记录在数据库中的有⼿机号（phone）
和密码（password），当然还包括创建的时间（createTime）。
这些信息作为数据库表项，在 models.py 中定义，在 models.py
⽂件中输⼊如下代码：

#! /usr/bin/python3
-*- coding:utf-8 -*-

from conf.base import BaseDB, engine
import sys
from sqlalchemy import (
Column,
Integer,
 String,
 DateTime
)

class Users(BaseDB):
 """table for users
 """
 __tablename__ = "users"
 #定义表结构，包括id，phone，password，createTime
 id = Column(Integer, primary_key=True)
 phone = Column(String(50), nullable=False)
 password = Column(String(50), nullable=True)
 createTime = Column(DateTime, nullable=True)

 def __init__(self, phone, password,
createTime):
 self.phone = phone

 self.password = password
 self.createTime = createTime

def initdb():
 BaseDB.metadata.create_all(engine)

if __name__ == '__main__':
 print ("Initialize database")
 initdb()

代码中初始化数据库

在 main.py 中，调⽤ models.py 初始化数据库并启⽤数据库

具体代码如下：

#! /usr/bin/python3
-*- coding:utf-8 -*-
Author: demo
Email: demo@demo.com
Version: demo

import tornado.ioloop
import tornado.web
import os

import sys
from tornado.options import define, options
from common.url_router import include,
url_wrapper
from tornado.options import define, options
from models import initdb
from sqlalchemy.orm import scoped_session,
sessionmaker
from conf.base import BaseDB, engine

class Application(tornado.web.Application):
 def __init__(self):
 initdb()
 handlers = url_wrapper([
 (r"/users/",
include('views.users.users_urls'))
])
 #定义tornado服务器的配置项，如
static/templates⽬录位置，debug级别等
 settings = dict(
 debug=True,

static_path=os.path.join(os.path.dirname(__file__
), "static"),

template_path=os.path.join(os.path.dirname(__file
__), "templates")
)
 tornado.web.Application.__init__(self,
handlers, **settings)
 self.db =
scoped_session(sessionmaker(bind=engine,

autocommit=False, autoflush=True,

expire_on_commit=False))

if __name__ == '__main__':
 print ("Tornado server is ready for
service\r")
 tornado.options.parse_command_line()
 Application().listen(8000, xheaders=True)
 tornado.ioloop.IOLoop.instance().start()

代码将⽤户信息写⼊数据库

修改 users_views.py，将⽤户数据写⼊数据库中，修改内容包括
从 models 中导⼊ Users 类表，并判断⽤户是否在数据库中。如果
存在，返回注册失败信息；如果不存在，将⽤户信息写⼊数据库，并
返回注册成功信息。

users_views.py 完整代码如下：

#! /usr/bin/python3
-*- coding:utf-8 -*-

import tornado.web
import sys

from tornado.escape import json_decode
import logging
from logging.handlers import
TimedRotatingFileHandler
from datetime import datetime

#从commons中导⼊http_response⽅法
from common.commons import (
 http_response,
)

#从配置⽂件中导⼊错误码
from conf.base import (
 ERROR_CODE,
)

from models import (
 Users
)

########## Configure logging #############
logFilePath = "log/users/users.log"
logger = logging.getLogger("Users")
logger.setLevel(logging.DEBUG)
handler = TimedRotatingFileHandler(logFilePath,
 when="D",
 interval=1,

backupCount=30)
formatter = logging.Formatter('%(asctime)s \
%(filename)s[line:%(lineno)d] %(levelname)s %

(message)s',)
handler.suffix = "%Y%m%d"
handler.setFormatter(formatter)
logger.addHandler(handler)

class RegistHandle(tornado.web.RequestHandler):
 """handle /user/regist request
 :param phone: users sign up phone
 :param password: users sign up password
 :param code: users sign up code, must six
digital code
 """

 @property
 def db(self):
 return self.application.db

 def post(self):
 try:
 #获取⼊参
 args = json_decode(self.request.body)
 phone = args['phone']
 password = args['password']
 verify_code = args['code']
 except:
 #获取⼊参失败时，抛出错误码及错误信息
 logger.info("RegistHandle: request
argument incorrect")
 http_response(self,
ERROR_CODE['1001'], 1001)
 return

 ex_user =
self.db.query(Users).filter_by(phone=phone).first
()
 if ex_user:
 #如果⼿机号已存在，返回⽤户已注册信息
 http_response(self,
ERROR_CODE['1002'], 1002)
 self.db.close()
 return
 else:
 #⽤户不存在，数据库表中插⼊⽤户信息
 logger.debug("RegistHandle: insert
db, user: %s" %phone)
 create_time =
datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 add_user = Users(phone, password,
create_time)
 self.db.add(add_user)
 self.db.commit()
 self.db.close()
 #处理成功后，返回成功码“0”及成功信息“ok”
 logger.debug("RegistHandle: regist
successfully")
 http_response(self, ERROR_CODE['0'],
0)

增加错误码处理

修改 base.py，增加错误码 1002：

"1002": "⽤户已注册，请直接登录",

结果检查

上⾯的⼏⼤步骤，从配置数据库，到代码指定数据库，再到将⽤户信
息写⼊数据库，我们已完成了数据库部分代码的编写，下⾯执⾏
main.py ⽂件，查看是否运⾏正常。

HTTP 发包模拟器再次请求注册信息

查看控制台

查看数据库

在 HTTP 发包模拟器上再次点击注册

可以看到，服务器端返回的错误信息提示该⽤户已注册。

代码下载

到⽬前为⽌，服务器端代码如下：
demo8 (https://github.com/Jawish185/demo8.git)

⼩结

⾄此，我们已完成了数据库的写⼊，加上前两节的逻辑处理和 log
处理，客户端与服务器端的第⼀条消息请求交互已完成。这⾥只是使
⽤到了 SQLAlchemy 很有限的功能，SQLAlchemy 具有很强⼤的功
能，感兴趣的同学可以访问 SQLAlchemy 官⽹
(http://docs.sqlalchemy.org/en/latest/)学习。

https://github.com/Jawish185/demo8.git
http://docs.sqlalchemy.org/en/latest/

