
服务器接收客户端图⽚上传，并保
存在硬盘中

前⾯⼏⼩节，我们已完成了 JSON 格式的纯数据交互，在 App 服务
器端的设计中，我们难免会接收客户端图⽚的上传，并提供端图⽚下
载。本⼩节将讲解，对于客户端向服务器端上传图⽚，服务器端将如
何处理。简单交互过程如下。

同样，在这⼀⼩节中，我们也使⽤⼯具来代替 App 客户端模拟图⽚
的上传。我们将要⽤到的⼯具是 JMeter，它是⼀个强⼤的⼯具，最
为熟知的是 HTTP 的测试。这⾥我们不去深⼊了解 JMeter，⽽只是
取其⼀个⼩功能 —— HTTP POST 图⽚的功能来完成讲解，读者如
果感兴趣，可以⾃⾏学习拓展。

下载 JMeter

通过官⽹下载 JMeter：Download Apache JMeter
(http://jmeter.apache.org/download_jmeter.cgi)

http://jmeter.apache.org/download_jmeter.cgi

安装 JMeter

下载完成后，解压⽂件夹，进⼊ bin ⽬录，点击 jmeter.bat 进⾏
JMeter 的安装，安装成功后的界⾯如下。

配置测试计划

切换语⾔

依次选择“Options” -> “Choose Language” -> “Chinese
(Simplified)”，如下图所示。

配置 HTTP 请求

右击 “Test Plan”，点击“添加” -> “Threads (Users)” -> “线程组”

右击 “线程组”，点击 “添加” -> “Sampler” -> “HTTP 请求”

在弹出的「HTTP 请求」框中进⾏如下设置：

第 1~4 步，按照截图输⼊或选择；
第 5 步，设定我们要上传图⽚（⽂件）的 URL 路径是
upload/file；
第 6 步，选择 “Files Upload”；
第 7 步，点击 ”添加”；

第 8 步，点击 “浏览”，从本地随便选取⼀张图⽚（或本⼩节末
尾提供的图⽚）；
第 9 步，输⼊该图⽚对象的参数名 image；
第 10 步，输⼊我们上传的⽂件类型 image。

⾄此，请求⻚⾯已配置完毕，点击 “⽂件” -> “保存测试计划” 如
下。

测试请求

点击如下 “启动” 按钮，测试是否请求成功

查看服务器端

此打印说明服务器端接收客户端请求成功，但由于 /upload/file
路径的代码未实现，服务器端返回 404 找不到路径。接下来，将进
⾏服务器端图⽚上传代码编写。

服务器端代码编写

调⽤逻辑

与第 6 ⼩节⽤户注册请求服务器端实现类似，客户端上传图⽚，进
⼊ main.py，将调⽤ url_router 转发到 upload_url.py 中，
在 upload_urls.py 中，对应的 URL 将调⽤ upload_views.py
的 UploadFileHandle 类，UploadFileHandle 为真正的代码
处理逻辑，在校验⽤户信息正确的情况下，返回图⽚ URL 给客户
端，客户端加载该图⽚。

创建⽬录

在 views 下⾯创建 upload ⽬录，在 upload 下创建
upload_urls.py、upload_views.py等⽂件。

在 log ⽬录下创建 upload ⽬录，⽤于存放⽇志。

图⽚⼀般会放在 static ⽬录下，在实际项⽬中，static 下的图⽚⽬
录也是分层级的，此次讲解，我们将简化，把图⽚直接放在
static/image ⽬录下。创建 image ⽬录如下：

编写逻辑代码

修改 main.py ⽂件，增加 views.upload.upload_urls下的
url 路由，修改 handers 如下：

 handlers = url_wrapper([
 (r"/users/",
include('views.users.users_urls')),
 (r"/upload/",
include('views.upload.upload_urls'))
])

修改 upload_urls.py，输⼊如下代码：

#!/usr/bin/python3
-*- coding:utf-8 -*-

from __future__ import unicode_literals
from .upload_views import (
 UploadFileHandle
)

urls = [
 #从/upload/file过来的请求，将调⽤upload_views⾥⾯
的UploadFileHandle类
 (r'file', UploadFileHandle)
]

修改 upload_views.py，输⼊如下代码：

#! /usr/bin/python3
-*- coding:utf-8 -*-

import tornado.web
import os
from tornado.escape import json_decode
import logging
from logging.handlers import
TimedRotatingFileHandler
import json

#从commons中导⼊http_response及save_files⽅法
from common.commons import (
 http_response,
 save_files

)

#从配置⽂件中导⼊错误码
from conf.base import (
 ERROR_CODE,
 SERVER_HEADER
)

########## Configure logging #############
logFilePath = "log/upload/upload.log"
logger = logging.getLogger("Upload")
logger.setLevel(logging.DEBUG)
handler = TimedRotatingFileHandler(logFilePath,
 when="D",
 interval=1,

backupCount=30)
formatter = logging.Formatter('%(asctime)s \
%(filename)s[line:%(lineno)d] %(levelname)s %
(message)s',)
handler.suffix = "%Y%m%d"
handler.setFormatter(formatter)
logger.addHandler(handler)

class
UploadFileHandle(tornado.web.RequestHandler):
 """handle /upload/file request, upload image
and save it to static/image/
 :param image: upload image
 """

 def post(self):

 try:
 #获取⼊参
 image_metas =
self.request.files['image']
 except:
 #获取⼊参失败时，抛出错误码及错误信息
 logger.info("UploadFileHandle:
request argument incorrect")
 http_response(self,
ERROR_CODE['1001'], 1001)
 return

 image_url = ""
 image_path_list = []
 if image_metas:
 #获取当前的路径
 pwd = os.getcwd()
 save_image_path = os.path.join(pwd,
"static/image/")
 logger.debug("UploadFileHandle: save
image path: %s" %save_image_path)
 #调⽤save_file⽅法将图⽚数据流保存在硬盘中
 file_name_list =
save_files(image_metas, save_image_path)
 image_path_list = [SERVER_HEADER +
"/static/image/" + i for i in file_name_list]
 ret_data = {"imageUrl":
image_path_list}
 #返回图⽚下载地址给客户端
 self.write(json.dumps({"data":
{"msg": ret_data, "code": 0}}))
 else:
 #如果图⽚为空，返回图⽚为空错误信息

 logger.info("UploadFileHandle: image
stream is empty")
 http_response(self,
ERROR_CODE['2001'], 2001)

这⾥，我们从 common 导⼊ save_files ⽤于处理图⽚的保存，从
conf 的 base 中导⼊ SERVER_HEADER，定义了我们服务器的 URL
前缀。同时也看到，upload 和 users 的 Log 配置（如级别）是单
独配置的，这样有助于单模块调试。下⾯修改 conf ⽬录下的
base.py ⽂件，增加如下：

完整代码如下：

#! /usr/bin/python3
-*- coding:utf-8 -*-

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import
declarative_base
engine =
create_engine('mysql://root:pwd@demo@localhost:33
06/demo?charset=utf8', encoding="utf8",
echo=False)
BaseDB = declarative_base()

#服务器端 IP+Port，请修改对应的IP
SERVER_HEADER = "http://150.109.33.132:8000"

ERROR_CODE = {
 "0": "ok",
 #Users error code
 "1001": "⼊参⾮法",
 "1002": "⽤户已注册，请直接登录",

 "2001": "上传图⽚不能为空"
}

commons.py 下，导⼊ os 模块（ import os ），并增加
save_files ⽅法：

import os

def save_files(file_metas, in_rel_path,
type='image'):
 """
 Save file stream to server
 """
 file_path = ""
 file_name_list = []
 for meta in file_metas:
 file_name = meta['filename']
 file_path = os.path.join(in_rel_path,
file_name)
 file_name_list.append(file_name)
 #save image as binary
 with open(file_path, 'wb') as up:
 up.write(meta['body'])
 return file_name_list

⾄此，服务器端的代码已完成。再次从 JMeter 触发图⽚上传，在触
发图⽚上传之前，我们先创建 JMeter 的结果树。所谓结果树，就是
在触发请求之后，查看服务器端返回的结构。右击 “HTTP 请求”，依
次选择“添加” -> ”监听器” -> “查看结果树”，如下图所示。

触发 JMeter 图⽚上传，点击 “察看结果树”，切到 “响应数据” ⻚
⾯，可以看到服务器端返回的数据信息：

{"data": {"msg": {"imageUrl":
["http://150.109.33.132:8000/static/image/demo.jp
g"]}, "code": 0}}

查看服务器端进程打印：

查看图⽚是否上传：

查看 log 是否成功写⼊：

此时，客户端就可以通过服务器端返回的图⽚
URL（http://150.109.33.132:8000/static/image/demo.jpg
加载图⽚了，在浏览器中输⼊图⽚ URL，查看加载是否成功。

代码下载

到⽬前为⽌，服务器端代码及图⽚如下：
demo9 (https://github.com/Jawish185/demo9.git)

⼩结

⾄此，我们完成了服务器端图⽚上传的接收及图⽚ URL 返回，客户
端根据服务器返回的图⽚ URL，即可加载该图⽚。这⾥没有写数据
库的操作，读者可以尝试参考第 8 节的讲解，定义图⽚的
models，并将图⽚ URL 和其他信息写⼊数据库中。

https://github.com/Jawish185/demo9.git

