
滑屏应⽤开发

滑屏应⽤开发的能⼒可以定义为：

利⽤ JavaScript 和 CSS3 来实现单⻚⾯应⽤的滑屏效
果，包括上下滑屏、左右滑屏，以及局部元素的滑动切
换效果。

滑屏 H5 应⽤在国内是异常⽕爆的⼀种内容展示交互形式，被⼴泛⽤
于各类线上营销活动场景中。

滑屏应⽤开发要求我们：

⾄少要掌握主流滑屏组件（如 Swiper）的具体⽤法
能不依赖已有组件实现简易的滑屏效果，了解滑屏的技术细节

上图为基础的滑屏⻚⾯效果示例。

善⽤利器

在平时⼯作过程中，考虑到项⽬的紧迫性和实现成本，我们⼤多数时
候会使⽤业界已有滑屏组件，如：

Swiper (https://github.com/nolimits4web/Swiper)：
Most modern mobile touch slider with hardware
accelerated transitions.

其它更多滑屏组件的选择可查阅《awesome-javascript》
(https://github.com/sorrycc/awesome-javascript#sliders)。

基于 Swiper 组件，只需数⾏代码即可创建⼀个基础的「滑屏应
⽤」，以上下滑屏为例:

HTML (Jade)：约定的 HTML 结构

div.swiper-container
 div.swiper-wrapper
 div.swiper-slide
 div.swiper-slide
 div.swiper-slide

CSS (SCSS) ：指定滑屏的尺⼨为视窗⼤⼩

.swiper-container {
 width: 100vw;
 height: 100vh;
}

JavaScript：初始化为竖直⽅向上的滑屏应⽤

new Swiper('.swiper-container', {
 direction: 'vertical',
})

善⽤成熟的组件可以让我们免去从零实现滑屏效果的成本，并能保证
开发速度和稳定性，解决 80% 的应⽤场景，但缺点是定制化成本较
⾼，另外就是代码冗余，有时候你只⽤了它 20% 的功能，但却要加

https://github.com/nolimits4web/Swiper
https://github.com/sorrycc/awesome-javascript#sliders

载其 100% 的体积。当然，如果我们的滑屏应⽤场景不需要做定制
化效果，也不⽤太在意那⼏⼗ KB 的体积的时候，利⽤业界成熟组件
是⾸选⽅式。

知其所以然

善⽤利器，我们只做到了知其然。有些时候现有的滑屏组件不⼀定能
满⾜个性化的业务需求，我们不得不去做⼆次开发，甚⾄需要根据个
性化需求重新开发⼀款适⽤当前应⽤场景的滑屏组件，这就要求我们
知其所以然。

作为示例，接下来我们探索下如何实现⼀个简单的 swiper。

我们将滑屏应⽤的实现分为两⼤部分：

判断⽤户的⼿势动作
根据⼿势动作执⾏相应滑屏过渡动画

为了更易理解，⼤家可以先在移动端体验以下三个例⼦，然后再阅读
下⾯内容。

滑屏应⽤例⼦ swiper.js 版本
(http://jdc.jd.com/lab/swiper/swiper_plugin/)
滑屏应⽤例⼦ hammer.js 版本
(http://jdc.jd.com/lab/swiper/swiper_hammer/)
滑屏应⽤例⼦ ⽆依赖版本
(http://jdc.jd.com/lab/swiper/swiper_pure/)

http://jdc.jd.com/lab/swiper/swiper_plugin/
http://jdc.jd.com/lab/swiper/swiper_hammer/
http://jdc.jd.com/lab/swiper/swiper_pure/

⼿势动作判断

⼿势动作判断是实现滑屏应⽤的核⼼逻辑。
对于上下滑屏应⽤，我们主要实现的⼿势动作有：瞬间的上下滑动和
按住拖拽滑动。

瞬间的上下滑动除了要考虑滑动的始末位置，还要考虑时间间隔，即
滑动速度。若满⾜⼀定的速度则代表⽤户是果断切换上下屏的动作，
反之，则是犹豫保留在当前屏的动作。

我们看下核⼼代码，

var _this = this
var drag = false
var y0 = 0
var deltaY = 0
var time0 = 0

this.$swiper.on('touchstart', function (ev) {
 drag = _this.$swiper
 y0 = ev.touches[0].pageY
 time0 = new Date()
})

this.$swiper.on('touchend', function (ev) {
 var interval = new Date() - time0
 drag = false
 // 拖拽完成后，判断移动⽅向、移动速度和移动距离等
 // 若划动速度满⾜，则执⾏上划或下划过渡动画。
 // 若划动速度不满⾜，则判断是否划动距离是否⼤于阈值(如
Swiper 容器的⾼度的⼀半)，若⼤于则执⾏上划或下划过渡画⾯，
反之回到当前活跃块。
 _this.panEnd(deltaY, deltaY / interval)
})

this.$swiper.on('touchmove', function (ev) {
 if (drag) {
 deltaY = ev.touches[0].pageY - y0
 // 设置 .swiper-wrapper 按住拖拽的位移。
 _this.pan(deltaY)
 }
})

事实上，业界已经有许多很好⽤的判断⼿势动作的插件，如知名的
hammer.js (https://hammerjs.github.io/) 或 zepto
(http://zeptojs.com/) 的 touch 模块。⼤家也可以通过阅读
hammer.js (https://hammerjs.github.io/) 的源码来进⼀步学习
⼿势动作判断处理的逻辑。

滑屏过渡动画

过渡动画是让滑屏效果更⾃然的必要⼿段。

实现过渡动画的常⻅⽅式有两种：CSS3 或 JavaScript 动画，我们下
⾯以 CSS3 动画作为示例。

这个过程我们需要关注的是什么时候触发动画，以及动画偏移的量为
多少。

假设当前活跃块的索引为 activeIndex，将其与 swiper 容器的⾼
度相乘并取反，可得到 .swiper-wrapper 的偏移量，然后设置适
当的 CSS transition-duration 属性即可轻松实现过渡动画效
果：

this.translate = -(this.activeIndex *
this.swiperHeight)
this.$swiperWrapper.css({
 'transform': 'translate3d(0, '+ this.translate
+'px, 0)',
 'transition': 'transform '+ 0.3 +'s'
})

若想保证⼀个过渡完成后，才能接收⽤户的下⼀个操作，则可以增加
animating 属性。动画过渡前就将其设置为 true，然后在
.swiper-wrapper 的 transitionend 事件触发时再将其设置为
false：

https://hammerjs.github.io/
http://zeptojs.com/
https://hammerjs.github.io/

this.$swiperWrapper.on('transitionend',
function(ev) {
 if (ev.propertyName === 'transform') {
 _this.animating = false
 }
})

上述是最基本的位移过渡动画，你还可以依样画葫芦实现渐隐渐现、
3D 翻转动画等。

源码分享

前⾯ 3 个体验例⼦的源码放在 Coding.net 上，源码附注释，读者
可以课后查阅。

滑屏应⽤例⼦源码 Swiper 版本
(https://coding.net/u/Jcc/p/swiper_plugin/git)
滑屏应⽤例⼦源码 hammer.js 版本
(https://coding.net/u/Jcc/p/swiper_hammer/git)
滑屏应⽤例⼦源码 ⽆依赖版本
(https://coding.net/u/Jcc/p/swiper_pure/git)

⼀个实际案例

最后放⼀个典型的滑屏 H5 应⽤的实际案例 —— 京东 2018 校园招
聘，供⼤家体验参考。

https://coding.net/u/Jcc/p/swiper_plugin/git
https://coding.net/u/Jcc/p/swiper_hammer/git
https://coding.net/u/Jcc/p/swiper_pure/git

（京东 2018 校园招聘
(http://wqs.jd.com/promote/201707/2018campus/index.html)

http://wqs.jd.com/promote/201707/2018campus/index.html

值得⼀提的是，这个滑屏 H5 案例使⽤了凹凸实验室⾃研开源的
HTML5 构建⼯具 ELF (https://elf.aotu.io/) 进⾏构建，利⽤ ELF
提供的命令⾏⼯具，我们只需敲⼀个命令就可以搭建⼀个具有基础功
能的滑屏应⽤，⼤⼤提升开发效率。

如果说 Swiper (https://github.com/nolimits4web/Swiper) 是开
发滑屏应⽤的利器，那么 ELF (https://elf.aotu.io/) 则是开发
HTML5 应⽤的利器。

如果没有 Swiper，那么我们每次开发⼀个滑屏应⽤的时候，都要重
新去写⼀遍滑屏⼿势的判断逻辑，还要重新写⼀遍滑屏的过渡动画。
ELF 解决的是类似的问题，将搭建 HTML5 应⽤的重复过程⾃动化，
将功能组件化、将交互形式模板化。它基于 Webpack 进⾏⾃动化构
建，提供基础功能组件和脚⼿架案例模板；利⽤ ELF 提供的命令⾏
⼯具 elf-cli，开发者可⾃由通过模板和组件的组合来快速定制开发
各种 HTML5 场景应⽤。

实际上 ELF 本身基本上浓缩了前⼀个⼩节「响应式⻚⾯开发」和本
⼩节「滑屏应⽤开发」的⼤部分内容，读者有兴趣可以移步 ELF 官
⽹ (https://elf.aotu.io/) 进⼀步了解下 ELF 的功能特性。

性能贴⼠

在开发滑屏应⽤的时候，我们应该尽可能做到以下⼏点来保证⻚⾯的
顺畅体验：

1. 做到延迟加载，避免浪费资源和并发加载资源数过⾼。
2. 做到预加载，预加载必要的资源，避免⽩屏。

在滑屏动画过渡期间，不要做繁重的任务，避免因占⽤资源过⾼⽽导
致卡顿。

⼩结

https://elf.aotu.io/
https://github.com/nolimits4web/Swiper
https://elf.aotu.io/
https://elf.aotu.io/

本⼩节通过案例以及源码的⽅式，为⼤家介绍了如何利⽤业界优秀的
滑屏开源组件「Swiper
(https://github.com/nolimits4web/Swiper)」来快速开发滑屏应
⽤，同时也解读了滑屏应⽤的关键处理逻辑：⼿势判断处理。

⾄此，我们学习了 「H5 开发」能⼒模型的前三种基础能⼒，在实际
⼯作过程中，当视觉设计师妹⼦扔给我们⼀个设计稿（PSD）时，⾄
少⼼⾥不会慌慌了。回想下第 2 ⼩节「基础⻚⾯开发」，我们知道
如何将⼀个设计稿转换成为⾼保真⽹⻚；如果这个设计稿是⼀个移动
端的稿⼦，需要适配各种⼿机设备，那么第 3 ⼩节「响应式⻚⾯开
发」给我们指引了⽅向；⽽如果它是⼀个单⻚⾯的滑屏 H5 活动，第
4 ⼩节「滑屏应⽤开发」⾥可以找到相应的开发思路。

但是，如果这个设计稿⾥⾯包含了许多动画效果的设计元素，需要我
们做各种动效，该怎么办？

https://github.com/nolimits4web/Swiper

