
动效开发 2：聊⼀聊 3D
我们在前⼀⼩节的案例中制作了⼀个⽴⽅体，其实就已经接触到了
3D。

所有东⻄⼀跟 3D 扯上关系，复杂指数都是噌噌噌往上⾛。不过也正
常，毕竟多了⼀个维度，要有三维应有的尊严。

3D Transforms 要怎么写？能写翻牌效果吗？能写翻书效果吗？能
写出⽴体书的效果吗？往下看，答案都在这⾥⾯。

很多时候，仅仅将元素进⾏⼆维层⾯的变换显然不是⼈类的终点，毕
竟⼗⼆维空间都可能不是极限（视频: 从⼀维空间到⼗⼆维空间
(http://v.youku.com/v_show/id_XNjA0MjU5NzA4.html?
from=s1.8-1-1.2)）。

Intro to 3D Transforms
(https://desandro.github.io/3dtransforms/) 的作者 David
DeSandro 说，现在可是 21 世纪，可我们竟然还在跟三⼗年前的⼆
维空间界⾯扯⽪。所幸 2011 年，我们有了 CSS3，我们还有了 3D
Transforms，真是⼀个值得奔⾛相告的⼤事件。

3D 变换相较 2D 变换，坐标系中多了 Z 轴，也就意味着物体除了上
下左右，还可以前后移动。⽽ rotate 在 2D 中的旋转⽅式，在 3D
中与 rotateZ 相当。

那么，单纯地将 transform 中的参数扩展出 Z 维度，就能实现 3D
效果了吗？我看⻅ CSS3 笑了。

perspective 概念理解

http://v.youku.com/v_show/id_XNjA0MjU5NzA4.html?from=s1.8-1-1.2
https://desandro.github.io/3dtransforms/

什么是 perspective ？词典中翻译为观点、远景、透视图。这是
⼀个⾮常抽象的概念，需要⼀点空间想象⼒。

我们先抛开这个概念，尝试使⽤刚才说到的知识点进⾏翻牌（咦）效
果的尝试，聪明的你⼀定分分钟码出来：

<div class="card">
 <!-- 卡牌正⾯ -->
 <figure class="card-front">1</figure>
 <!-- 卡牌反⾯ -->
 <figure class="card-back">2</figure>
</div>

.card-front {
 background: red;
}
.card-back {
 background: blue;
 transform: rotateY(180deg);
}
/* 翻牌动作 */
.card.flipped {
 transform: rotateY(180deg);
}

但是放浏览器⾥⼀看，这不对呀，为什么⽤ 3D 的代码写出了 2D 的
效果？

这个时候有请我们的 perspective 透视君。

学过素描的⼈⼀定对透视的概念不陌⽣，透视是保证素描写⽣真实合
理的基础。

视频：透视学之⼀点透视法
(https://www.bilibili.com/video/av14392523/)

CSS3 中的 perspective 在这样⼀个体系⾥就代表着元素与观者之
间的距离，形象点说，就是元素 3D 效果的强度。CSS3 中的 3D 效
果消失点固定，变化的是观者与元素之间的距离。不过
perspective 数值与 3D 效果强度是成反⽐的，数值越⼤，元素的
3D 效果越不明显 —— 2000px 的视点意味着你看的是远⽅的物
体，⽽ 100px 则意味着这个物体就在你眼前。

这⾥有幅图或许能帮助我们想象 3D 效果强度这个概念。

https://www.bilibili.com/video/av14392523/

（图⽚来源：维基百科
(https://en.wikipedia.org/wiki/Perspective_%28graphical%29)）

如果还是不懂，还有⼀个办法，就是在浏览器中边调整
perspective 数值边观察 3D 效果。

消失点

https://en.wikipedia.org/wiki/Perspective_%28graphical%29

（图⽚来源：Intro to CSS 3D transforms - Perspective
(https://desandro.github.io/3dtransforms/docs/perspective.html)

左图与右图的元素均绕 Y 轴旋转了 45°，但差别很明显，右图更容
易让⼈想到⼀个画⾯中集体开启的窗户。左图的问题就在于，每个元
素的消失点各⾃为政，都在元素的中⼼点位置，⽽右图的消失点则统
⼀在实线⽅框的中⼼位置。实现⽅法就是将元素的 perspective
设置转移⾄元素⽗容器上。

明眼⼈会说，这样⼦可以画个正⽅体出来了耶。我看⻅ CSS3 ⼜笑
了。

建⽴三维空间体系

https://desandro.github.io/3dtransforms/docs/perspective.html

现实总是乳⻮残酷~

有了 perspective 属性，我们顶多是⼀群会在纸上画素描的家
伙，要想徒⼿造模型，还是太嫩。就拿刚才的翻牌效果来说，如果你
翻滚 card ⽗容器，⽆论怎么翻，能看到的只有正⾯的卡⽚，因为现
在的体系就是⼀张素描绘画，你拿着再逼真的素描画翻到背⾯，也是
看不到真实物体的背⾯的对吧。超越平⾯ 3D 的关隘就在于
transform-style: preserve-3d 的属性设置，默认值为
flat，即“素描作品”。这个属性的设置旨在告诉⼦元素需要遵循怎
样的空间体系规则。这个属性不能继承，因此只要有⼦元素需要设置
空间体系规则，就得在⽗元素声明这个属性。

有了浏览器为我们处理空间体系规则，可以省不少事，不需要你担⼼
层级问题，不需要你操⼼哪个元素转到哪⾥要消失，哪个元素转到哪
⾥要出现。嗯，笔者从没⾃⼰这么⼲过，从没。

从翻牌到翻书

翻牌那是皇帝⼲的事⼉，我们⽂化⼈得翻书。刚才的翻牌都是在⽅块
的中部为轴进⾏的变换，我们把变换原点 transform-origin ⼀
换，就变成书⻚在翻了。

⼀本合上的书正常来说是在 Y 轴右侧，每⼀⻚都包含两⾯，也就是
说⼀本书是由若⼲个翻⻚效果组合⽽成，每⼀⻚的变换原点在元素左
侧。由此可以在翻牌的基础上迅速整出⼀个翻书 DEMO（猛戳 查看
翻书 DEMO
(http://lyxuncle.github.io/pageturning/demo/demo.html)）。

阴影的使⽤能让翻书效果变得更真实。

（猛戳 查看 DEMO（带阴影）
(http://lyxuncle.github.io/pageturning/demo/demo2.html)）

3D 动画之 Hard Level：⽴体书

⽴体书在外国叫 Pop-Up Book，满满的 “Surprise!” 感。这种超越
传统平⾯书籍的阅读模式常被⽤于⼉童书籍。

http://lyxuncle.github.io/pageturning/demo/demo.html
http://lyxuncle.github.io/pageturning/demo/demo2.html

（图⽚来源：A Guided Tour of THE MEL BIRNKRANT
COLLECTION
(http://melbirnkrant.com/collection/page48.html)）

要⽤ CSS3 实现这种效果，想想还有点⼩激动。

⾸先建⽴⼀个⽴体书规则：

书开，元素起
元素竖起速度⼩于等于书⻚开启速度
元素折叠后不可露出书边
元素层叠关系不可反⾃然

剩下的事也就⽔到渠成，⽆⾮是在每⼀⻚建⽴ 3D 体系、⽴体元素从
rotateY(90deg) 转换到 rotateY(0deg) 的事⼉。

http://melbirnkrant.com/collection/page48.html

（Mozzilla 的⼩ DEMO
(http://www.html5tricks.com/demo/css3-3d-
book/index.html)）

笔者曾做过⼀个丧⼼病狂的⽴体书触屏⻚，由于⽴体书左右两⻚互相
关联的特性，翻牌的⽅式不太适合⽤在这⾥，这⾥使⽤的是另⼀种较
为麻烦的⽅式 —— 不像翻牌⽅式中的前后两⻚捆绑，这⾥的书⻚左
右两⻚属于⼀个 3D 体系，通过 translateZ 值的变换控制层级关
系，因为在 3D 体系⾥，z-index 已被抛弃。

猛戳进⼊ ⻨芒推⼴⻚
(http://jdc.jd.com/fd/pp/maimang/index.html) 体验 3D ⽴体
书效果。

终端⽀持

由于截⾄⽬前为⽌，CSS3 的 3D 功能还⽌于炫技的阶段，安卓机与
iOS 的⽀持效果存在差异且难以调和，从上⾯那个案例中⾁眼可⻅的
坑就能看出，因此除了简单的 3D 转换，不建议在⽣产项⽬中⼤⾯积
使⽤ 3D 深层功能。

http://www.html5tricks.com/demo/css3-3d-book/index.html
http://jdc.jd.com/fd/pp/maimang/index.html

3D 与硬件加速

坊间流传这这样⼀个传说：⼀旦使⽤ 3D 属性，就能触发设备的硬件
加速，从⽽使得浏览器的表现更佳。但这句话也得看情境——

想象使⽤ GPU 加速的动画就像是 Vin Diesel（速度与激
情的主⻆）开着 Dominic 标志性的汽⻋ —— Dodge
Charger。它的定制 900 hp 引擎可以让它在⼀瞬间从 0
加速到 60 码。但是如果你开着它在拥挤的⾼速公路上⼜
有什么⽤呢？这种情况下错的不是你的⻋辆，⽽是你还
在⼀条拥堵的⾼速公路上。—— 《CSS 硬件加速的好与
坏》 (http://efe.baidu.com/blog/hardware-
accelerated-css-the-nice-vs-the-naughty/)

因此千万别贪⼼，将 3D 效果数量控制在⼀定范围内，⻚⾯性能才是
重中之重。——来⾃得到惨痛教训的笔者的忠告。

扩展阅读

Intro to CSS3 3D transforms
(https://desandro.github.io/3dtransforms/) by David

http://efe.baidu.com/blog/hardware-accelerated-css-the-nice-vs-the-naughty/
https://desandro.github.io/3dtransforms/

DeSandro —— 详尽⼜新鲜的 3D Transformers ⼿册，包含
许多⼀看就懂的⼩ Demo，妈妈再也不⽤担⼼我的 3D 了。
Perspective (graphical)
(https://en.wikipedia.org/wiki/Perspective_%28graphical%29)
—— 对透视学还⼀知半解的可以看看维基的详细说明。
Unfolding the Box Model: Exploring CSS 3D Transforms
(http://rupl.github.io/unfold/) by Chris Ruppel —— ⾮常
赞的 3D Transforms 介绍，从 2D 到 3D 过渡，启动联想学
习法，⼀看就明⽩，就怕你不看。
CSS 硬件加速的好与坏
(http://efe.baidu.com/blog/hardware-accelerated-css-
the-nice-vs-the-naughty/) —— 很多事情都不是⼀两句能
讲清楚的，但是只要深⼊了解原理，⼀两句都不⽤讲就清楚
了。

⼩结

本⼩节结合案例为⼤家介绍了实现 3D 效果的⼏个关键点：透视的概
念理解—— perspective、空间变换体系 —— transform-
style、Z 轴位移 —— translateZ。读者可以通过我们提供的丰
富案例进⼀步体会 3D 效果的具体实现。

https://en.wikipedia.org/wiki/Perspective_%28graphical%29
http://rupl.github.io/unfold/
http://efe.baidu.com/blog/hardware-accelerated-css-the-nice-vs-the-naughty/

