
动效开发 3：补间动画
我们已经知道如何利⽤ CSS3 让⽹⻚元素动起来，也知道怎么样让它
变得⽴体，接下来为⼤家讲解在实际⼯作过程中最为常⻅的两种基础
动画形式 ——「补间动画」和「逐帧动画」，先从「补间动画」说
起。

「补间动画」（Tween Animation）指的是：⼈为设定
动画的关键状态（也就是关键帧），⽽关键帧之间的过
渡过程则由计算机处理渲染的动画处理形式。

回想⼀下前⾯两个⼩节中的各种案例，不难发现 transition 属性
实现的动画都属于补间动画，⽽对于 animation 属性来说，使⽤了
除 steps 和 frames 以外的时间函数（如 ease、linear 或
cubic-bezier 等）的动画都属于补间动画。

可以说补间动画是 CSS3 动画中最常⻅的⼀种形式，常⻅到平时⼯作
中⼏乎所有的动效需求案例都能找到它的影⼦。

案例实战 1 - 京东 2017 海外招聘 H5

我们以京东 2017 海外招聘 (http://jdc.jd.com/h5/jd-campus-
2017/international/index.html) H5 的第三屏动画为例，为⼤家
讲解如何利⽤ CSS3 实现补间动画。

http://jdc.jd.com/h5/jd-campus-2017/international/index.html

步骤 1 - 动效审查与分解

动效审查与分解是动效开发的⾸要步骤，不管我们开发的是「补间动
画」还是「逐帧动画」。根据提供的设计稿，和设计师⼀起围绕动效
进⾏沟通审查（事实上有经验的设计师会在开始视觉设计之前提前和
开发同学沟通动效，设计稿定稿之后再⼀起回顾沟通），了解设计师
对动画时序的想法，并根据⾃⼰的开发经验评估预期动效设计的合理
性，必要的时候给予设计稿调优建议。

动效审查完毕后，可以输出⼀张动画属性分解表，以便于后续开发的
时候进⾏追溯调优，如下图所示。

步骤 2 - 根据需求进⾏切图

根据动画属性分解表，先进⾏切图（可回顾⼩册的第 2 ⼩节），将
需要添加动效的元素单独切出，如下图所示。

步骤 3 - ⻚⾯编码开发

切图完成后，我们根据设计稿进⾏构建还原，编写对应的⻚⾯
HTML 结构和样式。

具体的 HTML 代码和 SCSS 样式如下所示。

<!-- S 宣讲⾏程时间轴 -->
<div class="timeline">
 <div class="timeline_tit">
 宣讲⾏程
 Campus Talk Schedule
 </div>
 <div class="timeline_icon">
 <svg viewBox="0 0 102 102">

 <circle cx="51" cy="51" r="50"
transform="rotate(90 51 51)"></circle>
 </svg>
 </div>
 <ul class="timeline_list">
 <li class="timeline_item timeline_item_sp">
 <i
class="flag_sin"></i>

 <li class="timeline_item">
 09 /
20
 <span class="timeline_item_cnt
city">INSEAD

 <li class="timeline_item">
 09 /
21
 <span class="timeline_item_cnt
city">NTU

 <li class="timeline_item timeline_item_sp">
 <i
class="flag_us"></i>
 <span class="timeline_item_cnt
country">U.S

 <li class="timeline_item">
 09 /
26
 <span class="timeline_item_cnt
city">UCLA

 <li class="timeline_item">
 09 /
28
 UC
Berkely

 <li class="timeline_item">
 10 /
05
 <span class="timeline_item_cnt
city">Wharton

 <li class="timeline_item timeline_item_sp">
 <i
class="flag_uk"></i>
 <span class="timeline_item_cnt
country">U.K

 <li class="timeline_item">
 10 /
29
 <span class="timeline_item_cnt
city">LBS

 <li class="timeline_line">

</div>
<!-- E 宣讲⾏程时间轴 -->

.timeline {
 position: absolute;
 width: 100%;
 height: 100%;
 left: 0;
 top: 0;
 &_tit {
 position: relative;
 padding: rem(70px) 0 rem(30px);
 font-size: rem(60px);
 line-height: rem(90px);
 color: #fff;
 text-align: center;
 span{
 display: block;
 font-size: rem(36px);
 line-height: rem(50px);
 }
 &:after{
 content: "";
 position: absolute;
 width: rem(92px);
 height: 1px;
 background: #ff0000;
 bottom: 0;
 left: 50%;

 margin-left: rem(-46px);
 };
 }
 &_icon {
 position: relative;
 width: rem(102px);
 height: rem(102px);
 margin: rem(36px) auto 0;
 background: url("images/p3_01.png?__inline")
no-repeat center;
 background-size: rem(57px) rem(50px);
 svg {
 width: rem(102px);
 height: rem(102px);
 stroke: #0084ff;
 stroke-width: 2px;
 fill: none;
 stroke-dasharray: 400;
 }
 }
 &_list {
 position: relative;
 bottom: 0;
 width: rem(900px);
 height: rem(1224px);
 margin: 0 auto;
 padding: rem(68px) 0;
 display: flex;
 flex-direction: column;
 color: #fff;
 }
 &_line {
 position: absolute;

 width: 1px;
 height: 100%;
 background: #0084ff;
 top: 0;
 left: 50%;
 }
 &_item {
 position: relative;
 flex: 1;
 display: flex;
 align-items: center;
 z-index: 9;
 b {
 position: absolute;
 width: rem(16px);
 height: rem(16px);
 border-radius: 50%;
 left: 50%;
 top: 50%;
 margin: rem(-7px) 0 0 rem(-7px);
 z-index: 1;
 background: #fff;
 box-shadow: 0 0 0 rem(13px) #0084ff;
 }
 &_sp {
 b{
 background: #0084ff;
 box-shadow: none;
 }
 }
 &_cnt {
 flex: 1;
 padding: 0 rem(100px);

 &:nth-child(1){
 text-align:right;
 };
 &:nth-child(2){
 text-align:left;
 };
 &.flag{
 width: rem(111px);
 height: rem(65px);
 i{
 display: inline-block;
 width: rem(111px);
 height: rem(65px);
 background-size: 100%;
 }
 }
 &.country{
 font-size: rem(36px);
 color: #66b5ff;
 }
 &.time{
 font-size: rem(36px);
 }
 &.city{
 font-size: rem(48px);
 }
 .flag_sin{
 background: url("images/p3_02.png?
__inline") no-repeat;
 }
 .flag_us{
 background: url("images/p3_03.png?
__inline") no-repeat;

 }
 .flag_uk{
 background: url("images/p3_04.png?
__inline") no-repeat;
 }
 }
 }
}

步骤 4 - 结合动画属性分解表实现动画

我们从步骤 1 获得了动画属性分解表，下⾯根据它来⼀⼀实现动
画。

1. 图标圆形边框的路径描边动画

这样的描边动画效果⽆法⽤ CSS3 的⽅案实现，但可以通过 SVG 的
⽅案来实现。

1.1 确保 SVG 图形设置 stroke 属性实现描边效果

svg {
 // 设置描边
 stroke: #0084ff;
 stroke-width: 2px;
 fill: none;
}

1.2 对 SVG 图形设置 stroke-dasharray 属性

stroke-dasharray 属性是⽤来设置描边的虚线的图案范式，也就
是设置实线段和虚线段的宽度。

我们对 stroke-dasharray 属性作如下设置，其含义就是，实线
段的⻓度为 320，⽽虚线段的⻓度为 0，所以我们看到的仍是⼀条
实线的描边。

stroke-dasharray: 320; // stroke-dasharray: 320
0; 的等价写法

接下来我们利⽤ stroke-dashoffset 属性使得这条实线描边可以
出现和消失。

1.3 利⽤ stroke-dashoffset 属性实现补间动画

stroke-dashoffset 属性指定了虚线路径起始点的距离。

因此，当我们把 stroke-dashoffset 的值设置为 circle 的路径总
⻓度时，描边轨迹就会完全不可⻅，⽽逐步减⼩其值⾄ 0 时，可使
之完全呈现。

我们可以通过脚本获取描边路径的总⻓度：

// 我们取整为320
var path =
document.querySelector('circle').getTotalLength()
; // 等于313.6517333984375

最后，我们只需要设置初始关键帧和结束关键帧，对 stroke-
dashoffset 属性值从 320 变为 0 ，再根据动画时间表⾥的动画
时间、延时以及时间函数进⾏动画属性设置，就实现了 SVG 路径描
边的补间动画，代码如下所示。

.part3.in {
 .timeline_icon {
 svg {
 animation: on_tl_iconsvg .5s 0.9s linear
both;
 }
 }
}

@keyframes on_tl_iconsvg{
 0% {stroke-dashoffset: 320;}
 100% {stroke-dashoffset: 0;}
}

对于 animation-fill-mode 属性的详解，笔者推荐《理解
animation-fill-mode 属性》
(https://www.w3cplus.com/css3/understanding-css-
animation-fill-mode-property.html)⼀⽂，这⾥不作赘述。

2. 图标的渐现和上移动画

图标的渐现和上移效果都是作⽤于图标⽽⾔的，因此我们把这两个动
画合在⼀起写。

对于渐现渐隐效果，为了获得更好的性能，我们使⽤ opacity 属
性，⽽不是 display、visibility 属性；出于同样的考虑，对于
偏移效果，则使⽤ translate 属性，⽽避免使⽤
left、right、bottom、top 属性。

选取好合适的 CSS 属性之后，我们最后根据动画分解表进⾏分析实
现。从表中可知，渐变效果的时间为 0.8s，占总时间 1.2s 的⽐率
为 66.66%，再配合从设计稿测量得到的偏移值 480px，最终我们
很快就写出了动画代码，如下所示：

https://www.w3cplus.com/css3/understanding-css-animation-fill-mode-property.html

.part3.in {
 .timeline_icon {
 animation: on_tl_icon 1.2s .5s linear both;
 }
}

@keyframes on_tl_icon{
 0% {transform: translateY(rem(480px));opacity:
0}
 // 先渐现
 66.66% {transform:
translateY(rem(480px));opacity: 1}
 // 再向上偏移
 100% {transform: translateY(0);opacity: 1}
}

标题、标题下划线、⽇程时间轴线的动画实现，也是类似图标渐现和
上移动画的做法，这⾥就不展开了。

下⾯，我们来详细讲讲如何实现「⽇程时间轴的列表项按次序出现」
的补间动画。

3. ⽇程时间轴的序列动画

⽇程时间轴的列表项按次序出现的补间动画，这种对多个元素使⽤相
同的动画效果，且各个元素动画执⾏时机依次错开的、整⻬有序的序
列动画效果，我们可称之为序列动画。

⾸先，我们实现列表项展开的动画效果，代码如下所示。

@keyframes on_tl_item {
 0% {transform: scale(0,0); opacity: 0}
 100% {transform: scale(1,1); opacity: 1}
}

接着，我们利⽤ animation-delay 属性进⾏延时控制动画执⾏时
机的依次错开。

根据动画分解表，我们知道动画时⻓为 0.45s，初始延时 2.35s，
⽽每个列表项之间间隔 0.15s，因此推算得出第 i 个列表项（1 <=
i < 10）的延时为（2.2s + 0.15s + i)。

配合 SCSS 的 @for 控制指令⽤法，我们可以快速地循环输出样式，
代码如下所示。

.part3.in {
 .timeline_item {
 animation: on_tl_item 0.45s ease both;
 @for $i from 1 to 10 {
 &:nth-child(#{$i}) {
 animation-delay: (2.2s + 0.15s * $i);
 }
 }
 }
}

利⽤ @for 控制指令为多个列表项元素的相同动画效果动态⽣成样
式，并且通过 animation-delay 来控制依次错开动画执⾏的时
机，从⽽形成整⻬有序的序列动画效果。

⾄此，整个第三屏动画就完成了，查看 完整的 DEMO
(http://jdc.jd.com/demo/ting/H5Demo/recruit/index.html)
进⾏体验。

案例实战 2 - 京东 App 搜彩蛋：把动效设计
的锅扔给设计师

我们知道，动效开发的流程往往是：

http://jdc.jd.com/demo/ting/H5Demo/recruit/index.html

1. 设计师和开发童鞋⼀起构思整个动画的⽅案
2. 设计师根据动画⽅案出设计稿
3. 开发童鞋根据设计稿及动画⽅案⾃由发挥，进⾏动效的设计与
开发

在这样的流程下，动画成品效果的好与坏往往取决于开发童鞋在动效
设计⽅⾯的知识和经验是否丰富，⽽这对于初次接触动效开发的童鞋
来说恐怕是极⼤的挑战。

事实上，⼤多数前端开发者在动效设计⽅⾯并没有太多的积累，难以
做出令⼈拍⼿称赞的动画效果。⽽设计师（或动效设计师）却刚好相
反，因为他们⼀般都擅⻓使⽤做动效设计的⼯具 —— Flash 或
AE（After Effects）。

把「动效的设计」交给更专业的设计师，让他们输出完整的「动效
稿」，再让开发童鞋依据「动效稿」转换成为⽹⻚代码，未尝不是
⼀种好的动效开发⽅式。（笔者注：腾讯 TGideas 团队早在两三
年前就开始探索和实践这种动效开发⽅式，积累了丰富的实战经
验。）

由设计师来负责动效的设计，对项⽬来说还有以下好处：

设计师与开发的排期由「线性」变为「部分重叠」：设计师交
付静态设计稿后，开发就能进⾏视觉还原构建⻚⾯，设计师此
时即可进⼊动效设计。
设计师将动效设计导出为视频，提前取得各⽅满意度，避免开
发期间的反复沟通修改。

对开发童鞋来说，我们会迎来⼀个新的问题：如何还原「动效稿」，
将它转换成保真的⽹⻚动效？

我们接下来以「京东 2017 年 App 搜彩蛋项⽬ —— 苹果彩蛋」为
例，为⼤家解读如何基于 AE 稿开发补间动画（其思路也适⽤于逐帧
动画）。

读者可以⾃⾏ 下载本案例所⽤的 AE 稿
(http://jdc.jd.com/lab/2018-ae2css/apple.zip)。

基于 AE 实现 Web 动效

基于 AE ⼿⼯实现 Web 动画的主要⼯作有两个：

1. 取参 —— 在动效稿上拿到元素的参数信息，如 x/y/z、

http://jdc.jd.com/lab/2018-ae2css/apple.zip

rotation、动画设定等
2. 开发 —— 通过适当的 Web 技术进⾏动画开发，如

CSS3/Canvas/SVG 等

取参及 AE 界⾯使⽤指引

打开 apple.aep ⽂件，AE 界⾯如下：

点击 「信息模块」预览⾯板的播放按钮或拖动「时间轴模块」的 标
记3 即可预览动画。

为了利⽤ CSS3 animation 属性实现最终的动效，我们需要获取以
下关键设置信息：

动画持续时间 animation-duration
关键帧之间的时间轴函数 animation-timing-function
动画延时时间 animation-delay

由于该动画是⼀次性的，⽆需设置/获取动画的重复次数
（animation-iteration-count）及执⾏⽅向（animation-
direction）。

我们选取整个苹果彩蛋动画中⼀个⼩圆圈（共 60 个）为示例代表，
其余元素同理。

现在我们把⽬光投向「图层、运动模块」的 标记1：

（标记1 —— FPS）

由上图可得，FPS 为 12，即 1 秒 12 帧， 1 帧 0.0833 秒。

通过观察苹果彩蛋动画的预览效果可以发现，每个圆的延时时间
（animation-delay）、时间轴函数（animation-timing-
function）和持续时间（animation-duration）均不相同。换
句话说，每个圈都是⼀个独⽴的补间动画，所有元素组合起来才是⼀
个完整的补间动画。

双击「标记 2」，进⼊编组以查看每个圆的信息。

（⼦元素——圆）

在「查看器」或「图层、运动模块」任意选中⼀个圆，展开其 变换
属性并单击 位置（标记1），即可显示右侧的元素运动路径（标记
2）。同时这也反映了动画的变化速率（即时间轴函数 animation-
timing-function），后⾯会做进⼀步解读。

值得注意的是：位置 前⾯的时钟图标为蓝⾊时，代表当前属性有过
渡动画。

（某个圆的时间轴）

综上所述，可从上图得出以下信息点：

1. 该元素共有 4 个关键帧（绿线上的⼩⽅块）
2. 只有 Y 轴上发⽣位移运动（绿线），X 轴上则是静⽌状态（红
线）

3. 延时时间为 1 帧（绿线前⾯的虚线处）
4. 中间停留时间（第2、3 关键帧之间）为 1 帧
5. 过渡时间为 42 帧（3*12 + 7 - 1）。注意要减去延时时间
（1），因为 02:03 包含了它

利⽤ animation 属性实现动画

在拿到动画所需的各项设定参数信息后，便可以利⽤我们熟悉的
animation 实现某个圆的补间动画了。

<div class="circle-29"></div>

/* 默认定位在第2（或3）帧以让元素默认显示在屏幕内，便于开
发调试。 */
.circle-29 {
 width: 60px;
 height: 60px;
 background-color: rgba(0, 224, 93, .7);
 position: absolute;
 left: 473px;
 top: 348px;
 border-radius: 50%;
 animation-name: circle29;
 animation-duration: 3.5s; /* 42 * (1 / 12) */
 animation-delay: 0.0833s; /* 1 * (1 / 12) */
 animation-fill-mode: both;
 animation-timing-function: ease-in-out;
}
@keyframes circle29 {
 0% {
 transform: translate3d(0, 1175px, 0);
 }
 61.90% { /* (2 * 12 + 3 - 1) / 42，注意要减去延
时时间（1），因为 02:03 包含了它。下同。*/
 transform: translate3d(0, 0, 0);
 }
 64.29% {
 transform: translate3d(0, 0, 0);
 }
 100% {
 transform: translate3d(0, -1225px, 0);
 }
}

虽然略微烦琐，但是省去反复调整动画设定的时间，基本做到⼀次开
发即可输出满意的效果。

其余元素参考以上步骤执⾏即可完成整个苹果彩蛋动画。

假设没有动画预览效果和动效稿，仅靠开发童鞋⾃由发挥编码完成⼀
个由 60 多个元素组成的动画，简直难于上⻘天（⾄少对于笔者来
说）。

效果演示

上述实现代码使⽤ CodePen 做演示，读者可以⾃⾏查看体验。

查看单个圆的补间动画
(https://codepen.io/JChehe/full/VQOxxX)
完整的苹果彩蛋动画
(https://codepen.io/JChehe/full/ddBZKY)

或扫码体验：

（基于 AE 稿实现的补间动画 —— 2017 年京东 App 搜索彩蛋 ）

https://codepen.io/JChehe/full/VQOxxX
https://codepen.io/JChehe/full/ddBZKY

⼩结

本⼩节以 2 个实际⼯作中的案例 —— 「2017 京东海外招聘 H5」
(http://jdc.jd.com/h5/jd-campus-
2017/international/index.html) 及 「2017 年京东 App 搜索彩
蛋」 (http://jdc.jd.com/lab/2018-ae2css/apple/)，分别为⼤家
讲解了「如何利⽤ CSS3 实现补间动画」及「基于 AE 稿实现补间动
画」的完整过程。在实际⼯作过程中，如果动画⽅案较为复杂，可以
尝试后者，让设计师使⽤ AE 设计完整的动画，开发的时候基于 AE
稿来还原动效。当然，⽆论是哪⼀种⽅式，⽬前看来都免不了较⼤的
⼈⾁开发成本，虽然业界出现了⼀些能够直接将 AE 动画导出为
Web 动画的插件或开源库（代表性的有 Bodymovin
(https://www.adobeexchange.com/creativecloud.details.12557.html)
和 lottie-web (https://github.com/airbnb/lottie-web)，笔者还
尝试使⽤ Bodymovin 实现了前⾯的苹果彩蛋动画，查看 DEMO
(http://jdc.jd.com/lab/2018-ae-apple/)），但其实际可⽤性还
有待进⼀步的验证。

http://jdc.jd.com/h5/jd-campus-2017/international/index.html
http://jdc.jd.com/lab/2018-ae2css/apple/
https://www.adobeexchange.com/creativecloud.details.12557.html
https://github.com/airbnb/lottie-web
http://jdc.jd.com/lab/2018-ae-apple/

