
03 | 事务隔离：为什么你改了我还看不见？
2018-11-19 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 11:01 大小 6.32M

提到事务，你肯定不陌生，和数据库打交道的时候，我们总是会用到事务。最经典的例子就

是转账，你要给朋友小王转 100 块钱，而此时你的银行卡只有 100 块钱。

转账过程具体到程序里会有一系列的操作，比如查询余额、做加减法、更新余额等，这些操

作必须保证是一体的，不然等程序查完之后，还没做减法之前，你这 100 块钱，完全可以

借着这个时间差再查一次，然后再给另外一个朋友转账，如果银行这么整，不就乱了么？这

时就要用到“事务”这个概念了。

简单来说，事务就是要保证一组数据库操作，要么全部成功，要么全部失败。在 MySQL

中，事务支持是在引擎层实现的。你现在知道，MySQL 是一个支持多引擎的系统，但并不

是所有的引擎都支持事务。比如 MySQL 原生的 MyISAM 引擎就不支持事务，这也是

MyISAM 被 InnoDB 取代的重要原因之一。





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

今天的文章里，我将会以 InnoDB 为例，剖析 MySQL 在事务支持方面的特定实现，并基

于原理给出相应的实践建议，希望这些案例能加深你对 MySQL 事务原理的理解。

隔离性与隔离级别

提到事务，你肯定会想到 ACID（Atomicity、Consistency、Isolation、Durability，即原

子性、一致性、隔离性、持久性），今天我们就来说说其中 I，也就是“隔离性”。

当数据库上有多个事务同时执行的时候，就可能出现脏读（dirty read）、不可重复读

（non-repeatable read）、幻读（phantom read）的问题，为了解决这些问题，就有

了“隔离级别”的概念。

在谈隔离级别之前，你首先要知道，你隔离得越严实，效率就会越低。因此很多时候，我们

都要在二者之间寻找一个平衡点。SQL 标准的事务隔离级别包括：读未提交（read

uncommitted）、读提交（read committed）、可重复读（repeatable read）和串行化

（serializable ）。下面我逐一为你解释：

其中“读提交”和“可重复读”比较难理解，所以我用一个例子说明这几种隔离级别。假设

数据表 T 中只有一列，其中一行的值为 1，下面是按照时间顺序执行两个事务的行为。

读未提交是指，一个事务还没提交时，它做的变更就能被别的事务看到。

读提交是指，一个事务提交之后，它做的变更才会被其他事务看到。

可重复读是指，一个事务执行过程中看到的数据，总是跟这个事务在启动时看到的数据是

一致的。当然在可重复读隔离级别下，未提交变更对其他事务也是不可见的。

串行化，顾名思义是对于同一行记录，“写”会加“写锁”，“读”会加“读锁”。当出

现读写锁冲突的时候，后访问的事务必须等前一个事务执行完成，才能继续执行。

1

2

mysql> create table T(c int) engine=InnoDB;
insert into T(c) values(1);

复制代码

我们来看看在不同的隔离级别下，事务 A 会有哪些不同的返回结果，也就是图里面 V1、

V2、V3 的返回值分别是什么。

若隔离级别是“读未提交”， 则 V1 的值就是 2。这时候事务 B 虽然还没有提交，但是

结果已经被 A 看到了。因此，V2、V3 也都是 2。

防止断
更 请务

必加

首发微
信：1

71614
3665

在实现上，数据库里面会创建一个视图，访问的时候以视图的逻辑结果为准。在“可重复

读”隔离级别下，这个视图是在事务启动时创建的，整个事务存在期间都用这个视图。

在“读提交”隔离级别下，这个视图是在每个 SQL 语句开始执行的时候创建的。这里需要

注意的是，“读未提交”隔离级别下直接返回记录上的最新值，没有视图概念；而“串行

化”隔离级别下直接用加锁的方式来避免并行访问。

我们可以看到在不同的隔离级别下，数据库行为是有所不同的。Oracle 数据库的默认隔离

级别其实就是“读提交”，因此对于一些从 Oracle 迁移到 MySQL 的应用，为保证数据库

隔离级别的一致，你一定要记得将 MySQL 的隔离级别设置为“读提交”。

配置的方式是，将启动参数 transaction-isolation 的值设置成 READ-COMMITTED。你

可以用 show variables 来查看当前的值。

总结来说，存在即合理，哪个隔离级别都有它自己的使用场景，你要根据自己的业务情况来

定。我想你可能会问那什么时候需要“可重复读”的场景呢？我们来看一个数据校对逻辑的

若隔离级别是“读提交”，则 V1 是 1，V2 的值是 2。事务 B 的更新在提交后才能被 A

看到。所以， V3 的值也是 2。

若隔离级别是“可重复读”，则 V1、V2 是 1，V3 是 2。之所以 V2 还是 1，遵循的就

是这个要求：事务在执行期间看到的数据前后必须是一致的。

若隔离级别是“串行化”，则在事务 B 执行“将 1 改成 2”的时候，会被锁住。直到事

务 A 提交后，事务 B 才可以继续执行。所以从 A 的角度看， V1、V2 值是 1，V3 的值

是 2。

1

2

3

4

5

6

7

8

9

10

11

mysql> show variables like 'transaction_isolation';

+-----------------------+----------------+

| Variable_name | Value |

+-----------------------+----------------+

| transaction_isolation | READ-COMMITTED |

+-----------------------+----------------+

复制代码

案例。

假设你在管理一个个人银行账户表。一个表存了每个月月底的余额，一个表存了账单明细。

这时候你要做数据校对，也就是判断上个月的余额和当前余额的差额，是否与本月的账单明

细一致。你一定希望在校对过程中，即使有用户发生了一笔新的交易，也不影响你的校对结

果。

这时候使用“可重复读”隔离级别就很方便。事务启动时的视图可以认为是静态的，不受其

他事务更新的影响。

事务隔离的实现

理解了事务的隔离级别，我们再来看看事务隔离具体是怎么实现的。这里我们展开说明“可

重复读”。

在 MySQL 中，实际上每条记录在更新的时候都会同时记录一条回滚操作。记录上的最新

值，通过回滚操作，都可以得到前一个状态的值。

假设一个值从 1 被按顺序改成了 2、3、4，在回滚日志里面就会有类似下面的记录。

当前值是 4，但是在查询这条记录的时候，不同时刻启动的事务会有不同的 read-view。如

图中看到的，在视图 A、B、C 里面，这一个记录的值分别是 1、2、4，同一条记录在系统

中可以存在多个版本，就是数据库的多版本并发控制（MVCC）。对于 read-view A，要

得到 1，就必须将当前值依次执行图中所有的回滚操作得到。

同时你会发现，即使现在有另外一个事务正在将 4 改成 5，这个事务跟 read-view A、B、

C 对应的事务是不会冲突的。

你一定会问，回滚日志总不能一直保留吧，什么时候删除呢？答案是，在不需要的时候才删

除。也就是说，系统会判断，当没有事务再需要用到这些回滚日志时，回滚日志会被删除。

什么时候才不需要了呢？就是当系统里没有比这个回滚日志更早的 read-view 的时候。

基于上面的说明，我们来讨论一下为什么建议你尽量不要使用长事务。

长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任

何数据，所以这个事务提交之前，数据库里面它可能用到的回滚记录都必须保留，这就会导

致大量占用存储空间。

在 MySQL 5.5 及以前的版本，回滚日志是跟数据字典一起放在 ibdata 文件里的，即使长

事务最终提交，回滚段被清理，文件也不会变小。我见过数据只有 20GB，而回滚段有

200GB 的库。最终只好为了清理回滚段，重建整个库。

除了对回滚段的影响，长事务还占用锁资源，也可能拖垮整个库，这个我们会在后面讲锁的

时候展开。

事务的启动方式

如前面所述，长事务有这些潜在风险，我当然是建议你尽量避免。其实很多时候业务开发同

学并不是有意使用长事务，通常是由于误用所致。MySQL 的事务启动方式有以下几种：

1. 显式启动事务语句， begin 或 start transaction。配套的提交语句是 commit，回滚语

句是 rollback。

2. set autocommit=0，这个命令会将这个线程的自动提交关掉。意味着如果你只执行一

个 select 语句，这个事务就启动了，而且并不会自动提交。这个事务持续存在直到你主

拼课微
信：1

71614
3665

动执行 commit 或 rollback 语句，或者断开连接。

有些客户端连接框架会默认连接成功后先执行一个 set autocommit=0 的命令。这就导致

接下来的查询都在事务中，如果是长连接，就导致了意外的长事务。

因此，我会建议你总是使用 set autocommit=1, 通过显式语句的方式来启动事务。

但是有的开发同学会纠结“多一次交互”的问题。对于一个需要频繁使用事务的业务，第二

种方式每个事务在开始时都不需要主动执行一次 “begin”，减少了语句的交互次数。如

果你也有这个顾虑，我建议你使用 commit work and chain 语法。

在 autocommit 为 1 的情况下，用 begin 显式启动的事务，如果执行 commit 则提交事

务。如果执行 commit work and chain，则是提交事务并自动启动下一个事务，这样也省

去了再次执行 begin 语句的开销。同时带来的好处是从程序开发的角度明确地知道每个语

句是否处于事务中。

你可以在 information_schema 库的 innodb_trx 这个表中查询长事务，比如下面这个语

句，用于查找持续时间超过 60s 的事务。

小结

这篇文章里面，我介绍了 MySQL 的事务隔离级别的现象和实现，根据实现原理分析了长

事务存在的风险，以及如何用正确的方式避免长事务。希望我举的例子能够帮助你理解事

务，并更好地使用 MySQL 的事务特性。

我给你留一个问题吧。你现在知道了系统里面应该避免长事务，如果你是业务开发负责人同

时也是数据库负责人，你会有什么方案来避免出现或者处理这种情况呢？

你可以把你的思考和观点写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢

你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

1 select * from information_schema.innodb_trx where TIME_TO_SEC(timediff(now(),trx_started

复制代码

上期问题时间

在上期文章的最后，我给你留下的问题是一天一备跟一周一备的对比。

好处是“最长恢复时间”更短。

在一天一备的模式里，最坏情况下需要应用一天的 binlog。比如，你每天 0 点做一次全量

备份，而要恢复出一个到昨天晚上 23 点的备份。

一周一备最坏情况就要应用一周的 binlog 了。

系统的对应指标就是 @尼古拉斯·赵四 @慕塔 提到的 RTO（恢复目标时间）。

当然这个是有成本的，因为更频繁全量备份需要消耗更多存储空间，所以这个 RTO 是成本

换来的，就需要你根据业务重要性来评估了。

同时也感谢 @super blue cat、@高枕、@Jason 留下了高质量的评论。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 02 | 日志系统：一条SQL更新语句是如何执行的？

下一篇 04 | 深入浅出索引（上）

壹笙☞漂泊 置顶

2018-11-19
 161

1、务的特性：原子性、一致性、隔离性、持久性
2、多事务同时执行的时候，可能会出现的问题：脏读、不可重复读、幻读
3、事务隔离级别：读未提交、读提交、可重复读、串行化
4、不同事务隔离级别的区别：
 读未提交：一个事务还未提交，它所做的变更就可以被别的事务看到 …
展开

作者回复: 总结得非常好�

第二讲问题，其实备份是强需求，至于多少合适，还是得平衡业务需求和存储成本

极客时间Mo... 置顶

2018-11-19
 19

预告：林晓斌老师将做客极客Live，分享他MySQL的心路历程
前阿里丁奇：我的MySQL心路历程
11月21日（周三） 20:30-21:30

本次直播，林晓斌将畅谈个人成长经历，分享自己是如何从数据库小白逐步成长为MySQ…
展开

京京beaver 置顶

2018-12-28
 6

mysql> show variables like 'transaction_isolation';
这句写错了，应该是tx_isolation。测试了一下

作者回复: 你是不是用的5.6或更早的版本😄

5.7引入了transaction_isolation用来替换tx_isolation了，到8.0.3就去掉了后者了

精选留言 (281)  写留言

LAMBO
2018-11-20

 117

读未提交：别人改数据的事务尚未提交，我在我的事务中也能读到。
读已提交：别人改数据的事务已经提交，我在我的事务中才能读到。
可重复读：别人改数据的事务已经提交，我在我的事务中也不去读。
串行：我的事务尚未提交，别人就别想改数据。
这4种隔离级别，并行性能依次降低，安全性依次提高。

展开

作者回复: 总结的好�

WL
2018-11-24

 60

为该讲总结了几个问题, 大家复习的时候可以先尝试回答这些问题检查自己的掌握程度:

 1.
事务的概念是什么?
 2. …
展开

作者回复: 谢谢。我在微博上会截图优质评论，你的总结会经常“上榜”哈。如果有不合适你跟我

说下，我去删掉🤝

Gavin
2018-12-04

 32

下面是我的自问自答，也是我的学习笔记，问下斌哥，这样理解准确吗？
在可重复读的隔离级别下，如何理解**当系统里没有比这个回滚日志更早的 read-view 的
时候**，这个回滚日志就会被删除？

这也是**尽量不要使用长事务**的主要原因。 …
展开

作者回复: 非常好

滩涂曳尾
2018-11-20

 32

在“读提交”隔离级别下，这个视图是在每个 SQL 语句开始执行的时候创建的。老师，这
句话怎么理解呢

William
2018-12-13

 25

脏读：
 当数据库中一个事务A正在修改一个数据但是还未提交或者回滚，
 另一个事务B 来读取了修改后的内容并且使用了，
 之后事务A提交了，此时就引起了脏读。
 …
展开

lfn
2018-11-19

 25

事务隔离的实现似乎有点太简略，没跟上林老师的思路。。

作者回复: 对于RR，你可以这么想，每个事务启动的时候打一个快照，别人改的“我不听我不

听”😄

果然如此
2018-11-19

 23

作业：设置autocommit=1，另外，编写一个定时监控Innodb_trx表中时间比较大的事务
的任务，如果发现长事务，随时自动发邮件提醒开发人员。

展开

杨
2018-11-21

 19

能抽出一章详细的讲讲mvcc吗，感觉很模糊

展开

* 晓 *  18

2018-11-20

老师，MySQL中undo的内容会被记录到redo中吗？比如一个事务在执行到一半的时候实
例崩溃了，在恢复的时候是不是先恢复redo，再根据redo构造undo回滚宕机前没有提交
的事务呢？

作者回复: 对的，是你说的这个流程

TimiPai
2018-12-10

 12

林老师，您好，我在书上看到事务隔离级别为“可重复读”时，可能会出现幻读的情况，
幻读书上说是当事务A在读取某个范围内的记录时，事务B又在该范围插入了新的数据，导
致事务A读到事务B插入的数据，但是，“可重复读”级别不是提供了一个一致性视图吗，
为什么事务B插入的数据会影响到这个视图呢？辛苦您解答了！

展开

null
2018-11-22

 10

帮助记忆：
视图理解为数据副本，每次创建视图时，将当前『已持久化的数据』创建副本，后续直接
从副本读取，从而达到数据隔离效果。

存在视图的 2 种隔离级别： …
展开

作者回复: 对，读和读不互斥的

王凯
2018-11-19

 10

autocommit设置为1，用文中提到的检查长事务的方法做每秒的计划任务检查，检查到的
话记录并杀死进程。

另外，设置SET GLOBAL MAX_EXECUTION_TIME=3000. 确保单条语句执行时间在规定
的范围之内。

展开

作者回复: �

不过global设下去恐怕担心如果真有需要执行久的，（比如备份），会不会被误伤😄

可以考虑设置成session内有效，让业务代码主动去做？

ThinkingQu...
2018-11-19

 10

感谢老师的高质量文章。

试图的实现，多个回滚段那一块，不是很好理解。

展开

梁中华
2018-11-19

 8

感觉没讲透，最好结合锁一起讲才能彻底讲清楚，比如两个RR级的事务同时启动，都是对
同一个字段操作，系统起了两个互不影响的view,那事务的结果会不会被覆盖，直觉上肯定
不会被覆盖，大家知道记录上会有锁，但这个锁和view是什么关系呢？建议mvcc可以展开
来讲讲。

展开

作者回复: 涉及到更新是是涉及行锁，在第七讲会讲到。

lionetes
2018-11-19

 8

mvcc是有undo实现的，undo又是有redo 引起生成，默认事务是rr，但还是建议rc ，这
节篇幅有点短 哈哈 看不够

展开

LY
2018-11-19

 7

老师 同一个事务中的插入/更新/删除->查询，这种情况呢

作者回复: 那自己改了肯定得看到呀，不然程序逻辑崩溃了😄

兔斯基
2018-11-19

 7

是不是可以理解为
读提交不能保证一个事务中对同一条数据的每次读取都一致。
可重复读可以保证在一个事务性，每次读取同一条记录，值是不会发生改变的。

展开

