
06 | 全局锁和表锁 ：给表加个字段怎么有这么多阻碍？
2018-11-26 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 13:01 大小 5.97M

今天我要跟你聊聊 MySQL 的锁。数据库锁设计的初衷是处理并发问题。作为多用户共享

的资源，当出现并发访问的时候，数据库需要合理地控制资源的访问规则。而锁就是用来实

现这些访问规则的重要数据结构。

根据加锁的范围，MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类。今天这篇文

章，我会和你分享全局锁和表级锁。而关于行锁的内容，我会留着在下一篇文章中再和你详

细介绍。

这里需要说明的是，锁的设计比较复杂，这两篇文章不会涉及锁的具体实现细节，主要介绍

的是碰到锁时的现象和其背后的原理。

全局锁





 下载APP 

顾名思义，全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法，命

令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候，可

以使用这个命令，之后其他线程的以下语句会被阻塞：数据更新语句（数据的增删改）、数

据定义语句（包括建表、修改表结构等）和更新类事务的提交语句。

全局锁的典型使用场景是，做全库逻辑备份。也就是把整库每个表都 select 出来存成文

本。

以前有一种做法，是通过 FTWRL 确保不会有其他线程对数据库做更新，然后对整个库做备

份。注意，在备份过程中整个库完全处于只读状态。

但是让整库都只读，听上去就很危险：

看来加全局锁不太好。但是细想一下，备份为什么要加锁呢？我们来看一下不加锁会有什么

问题。

假设你现在要维护“极客时间”的购买系统，关注的是用户账户余额表和用户课程表。

现在发起一个逻辑备份。假设备份期间，有一个用户，他购买了一门课程，业务逻辑里就要

扣掉他的余额，然后往已购课程里面加上一门课。

如果时间顺序上是先备份账户余额表 (u_account)，然后用户购买，然后备份用户课程表

(u_course)，会怎么样呢？你可以看一下这个图：

如果你在主库上备份，那么在备份期间都不能执行更新，业务基本上就得停摆；

如果你在从库上备份，那么备份期间从库不能执行主库同步过来的 binlog，会导致主从

延迟。

图 1 业务和备份状态图

可以看到，这个备份结果里，用户 A 的数据状态是“账户余额没扣，但是用户课程表里面

已经多了一门课”。如果后面用这个备份来恢复数据的话，用户 A 就发现，自己赚了。

作为用户可别觉得这样可真好啊，你可以试想一下：如果备份表的顺序反过来，先备份用户

课程表再备份账户余额表，又可能会出现什么结果？

也就是说，不加锁的话，备份系统备份的得到的库不是一个逻辑时间点，这个视图是逻辑不

一致的。

说到视图你肯定想起来了，我们在前面讲事务隔离的时候，其实是有一个方法能够拿到一致

性视图的，对吧？

是的，就是在可重复读隔离级别下开启一个事务。

官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数–single-transaction

的时候，导数据之前就会启动一个事务，来确保拿到一致性视图。而由于 MVCC 的支持，

这个过程中数据是可以正常更新的。

你一定在疑惑，有了这个功能，为什么还需要 FTWRL 呢？一致性读是好，但前提是引擎要

支持这个隔离级别。比如，对于 MyISAM 这种不支持事务的引擎，如果备份过程中有更

新，总是只能取到最新的数据，那么就破坏了备份的一致性。这时，我们就需要使用

FTWRL 命令了。

所以，single-transaction 方法只适用于所有的表使用事务引擎的库。如果有的表使用了

不支持事务的引擎，那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员

使用 InnoDB 替代 MyISAM 的原因之一。

你也许会问，既然要全库只读，为什么不使用 set global readonly=true 的方式呢？确

实 readonly 方式也可以让全库进入只读状态，但我还是会建议你用 FTWRL 方式，主要有

两个原因：

业务的更新不只是增删改数据（DML)，还有可能是加字段等修改表结构的操作（DDL）。

不论是哪种方法，一个库被全局锁上以后，你要对里面任何一个表做加字段操作，都是会被

锁住的。

但是，即使没有被全局锁住，加字段也不是就能一帆风顺的，因为你还会碰到接下来我们要

介绍的表级锁。

表级锁

备注：如果你对事务隔离级别的概念不是很清晰的话，可以再回顾一下第 3

篇文章《事务隔离：为什么你改了我还看不见？》中的相关内容。

一是，在有些系统中，readonly 的值会被用来做其他逻辑，比如用来判断一个库是主库

还是备库。因此，修改 global 变量的方式影响面更大，我不建议你使用。

二是，在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开，

那么 MySQL 会自动释放这个全局锁，整个库回到可以正常更新的状态。而将整个库设

置为 readonly 之后，如果客户端发生异常，则数据库就会一直保持 readonly 状态，这

样会导致整个库长时间处于不可写状态，风险较高。

https://time.geekbang.org/column/article/68963

MySQL 里面表级别的锁有两种：一种是表锁，一种是元数据锁（meta data lock，

MDL)。

表锁的语法是 lock tables … read/write。与 FTWRL 类似，可以用 unlock tables 主动

释放锁，也可以在客户端断开的时候自动释放。需要注意，lock tables 语法除了会限制别

的线程的读写外，也限定了本线程接下来的操作对象。

举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句，则其他线程

写 t1、读写 t2 的语句都会被阻塞。同时，线程 A 在执行 unlock tables 之前，也只能执

行读 t1、读写 t2 的操作。连写 t1 都不允许，自然也不能访问其他表。

在还没有出现更细粒度的锁的时候，表锁是最常用的处理并发的方式。而对于 InnoDB 这

种支持行锁的引擎，一般不使用 lock tables 命令来控制并发，毕竟锁住整个表的影响面还

是太大。

另一类表级的锁是 MDL（metadata lock)。MDL 不需要显式使用，在访问一个表的时候

会被自动加上。MDL 的作用是，保证读写的正确性。你可以想象一下，如果一个查询正在

遍历一个表中的数据，而执行期间另一个线程对这个表结构做变更，删了一列，那么查询线

程拿到的结果跟表结构对不上，肯定是不行的。

因此，在 MySQL 5.5 版本中引入了 MDL，当对一个表做增删改查操作的时候，加 MDL

读锁；当要对表做结构变更操作的时候，加 MDL 写锁。

虽然 MDL 锁是系统默认会加的，但却是你不能忽略的一个机制。比如下面这个例子，我经

常看到有人掉到这个坑里：给一个小表加个字段，导致整个库挂了。

你肯定知道，给一个表加字段，或者修改字段，或者加索引，需要扫描全表的数据。在对大

表操作的时候，你肯定会特别小心，以免对线上服务造成影响。而实际上，即使是小表，操

作不慎也会出问题。我们来看一下下面的操作序列，假设表 t 是一个小表。

读锁之间不互斥，因此你可以有多个线程同时对一张表增删改查。

读写锁之间、写锁之间是互斥的，用来保证变更表结构操作的安全性。因此，如果有两个

线程要同时给一个表加字段，其中一个要等另一个执行完才能开始执行。

备注：这里的实验环境是 MySQL 5.6。

我们可以看到 session A 先启动，这时候会对表 t 加一个 MDL 读锁。由于 session B 需要

的也是 MDL 读锁，因此可以正常执行。

之后 session C 会被 blocked，是因为 session A 的 MDL 读锁还没有释放，而 session C

需要 MDL 写锁，因此只能被阻塞。

如果只有 session C 自己被阻塞还没什么关系，但是之后所有要在表 t 上新申请 MDL 读锁

的请求也会被 session C 阻塞。前面我们说了，所有对表的增删改查操作都需要先申请

MDL 读锁，就都被锁住，等于这个表现在完全不可读写了。

如果某个表上的查询语句频繁，而且客户端有重试机制，也就是说超时后会再起一个新

session 再请求的话，这个库的线程很快就会爆满。

你现在应该知道了，事务中的 MDL 锁，在语句执行开始时申请，但是语句结束后并不会马

上释放，而会等到整个事务提交后再释放。

基于上面的分析，我们来讨论一个问题，如何安全地给小表加字段？

首先我们要解决长事务，事务不提交，就会一直占着 MDL 锁。在 MySQL 的

information_schema 库的 innodb_trx 表中，你可以查到当前执行中的事务。如果你要做

DDL 变更的表刚好有长事务在执行，要考虑先暂停 DDL，或者 kill 掉这个长事务。

但考虑一下这个场景。如果你要变更的表是一个热点表，虽然数据量不大，但是上面的请求

很频繁，而你不得不加个字段，你该怎么做呢？

这时候 kill 可能未必管用，因为新的请求马上就来了。比较理想的机制是，在 alter table

语句里面设定等待时间，如果在这个指定的等待时间里面能够拿到 MDL 写锁最好，拿不到

也不要阻塞后面的业务语句，先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过

程。

MariaDB 已经合并了 AliSQL 的这个功能，所以这两个开源分支目前都支持 DDL

NOWAIT/WAIT n 这个语法。

小结

今天，我跟你介绍了 MySQL 的全局锁和表级锁。

全局锁主要用在逻辑备份过程中。对于全部是 InnoDB 引擎的库，我建议你选择使用–

single-transaction 参数，对应用会更友好。

表锁一般是在数据库引擎不支持行锁的时候才会被用到的。如果你发现你的应用程序里有

lock tables 这样的语句，你需要追查一下，比较可能的情况是：

1

2

ALTER TABLE tbl_name NOWAIT add column ...
ALTER TABLE tbl_name WAIT N add column ...

复制代码

要么是你的系统现在还在用 MyISAM 这类不支持事务的引擎，那要安排升级换引擎；

要么是你的引擎升级了，但是代码还没升级。我见过这样的情况，最后业务开发就是把

lock tables 和 unlock tables 改成 begin 和 commit，问题就解决了。

MDL 会直到事务提交才释放，在做表结构变更的时候，你一定要小心不要导致锁住线上查

询和更新。

最后，我给你留一个问题吧。备份一般都会在备库上执行，你在用–single-transaction 方

法做逻辑备份的过程中，如果主库上的一个小表做了一个 DDL，比如给一个表上加了一

列。这时候，从备库上会看到什么现象呢？

你可以把你的思考和观点写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢

你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

说明：这篇文章没有介绍到物理备份，物理备份会有一篇单独的文章。

上期问题时间

上期的问题是关于对联合主键索引和 InnoDB 索引组织表的理解。

我直接贴 @老杨同志 的回复略作修改如下（我修改的部分用橙色标出）：

表记录

–a--|–b--|–c--|–d--

1 2 3 d

1 3 2 d

1 4 3 d

2 1 3 d

2 2 2 d

2 3 4 d

主键 a，b 的聚簇索引组织顺序相当于 order by a,b ，也就是先按 a 排序，再按 b 排序，

c 无序。

索引 ca 的组织是先按 c 排序，再按 a 排序，同时记录主键

–c--|–a--|–主键部分b-- （注意，这里不是 ab，而是只有 b）

2 1 3

2 2 2

3 1 2

3 1 4

3 2 1

4 2 3

这个跟索引 c 的数据是一模一样的。

索引 cb 的组织是先按 c 排序，在按 b 排序，同时记录主键

–c--|–b--|–主键部分a-- （同上）

2 2 2

2 3 1

3 1 2

3 2 1

3 4 1

4 3 2

所以，结论是 ca 可以去掉，cb 需要保留。

评论区留言点赞：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

@浪里白条 帮大家总结了复习要点；

@约书亚 的问题里提到了 MRR 优化；

@HwangZHen 留言言简意赅。

上 篇 05 | 深入浅出索引（下）

上一篇 05 | 深入浅出索引（下）

下一篇 07 | 行锁功过：怎么减少行锁对性能的影响？

echo＿陈 置顶

2018-11-26

mysql 5.6不是支持online ddl了吗？也就是对表操作增加字段等功能，实际上不会阻塞读
写？

作者回复: Online DDL的过程是这样的：

1. 拿MDL写锁

2. 降级成MDL读锁

3. 真正做DDL

4. 升级成MDL写锁

5. 释放MDL锁

1、2、4、5如果没有锁冲突，执行时间非常短。第3步占用了DDL绝大部分时间，这期间这个表

可以正常读写数据，是因此称为“online ”

我们文中的例子，是在第一步就堵住了

 3  75

lionetes 置顶

2018-11-26

FTWRL 前有读写的话 ,FTWRL 都会等待 读写执行完毕后才执行
FTWRL 执行的时候要刷脏页的数据到磁盘,因为要保持数据的一致性 ，理解的执行FTWRL
时候是 所有事务 都提交完毕的时候

mysqldump + -single-transaction 也是保证事务的一致性,但他只针对 有支持事务 引…
展开

作者回复: 分析得很好。

尤其readonly 对 super 权限无效这句。

  48

精选留言 (238)  写留言

翟毅 置顶
2019-01-24

MDL作用是防止DDL和DML并发的冲突，个人感觉应该写清楚，一开始理解为select和up
date之间的并发。

作者回复: 嗯 特意写了是MDL“读锁”。

把你的留言置顶了，希望有疑问的同学能看到这个😆

  39

miche 置顶

2018-11-28

1. 上面的那个因为mdl锁把整个库搞挂的例子里，如果用pt工具来操作，会出现同样的情
况吗？
2. 那个例子里显示select语句前加了begin，是不是select的时候不加begin，就不会出现
同样的情况呢？
3. online ddl 的copy方式和inplace方式，也都是需要 拿MDL写锁、降成读锁、做DDL…
展开

作者回复: 1. Pt的过程也是有操作表结构的，所以会类似

2. 对，没有begin的话，这样select执行完成以后，MDL就自动释放了哦

3. 是，是否online都是第三步（结合置顶评论看哈）的区别，另外四步还是有的

  12

壹笙☞漂泊
2018-11-26

总结：
根据加锁范围：MySQL里面的锁可以分为：全局锁、表级锁、行级锁

一、全局锁：
对整个数据库实例加锁。 …
展开

作者回复: 早啊今天😄

  51

马涛
2019-03-02

索引问题答案解释这个是不是再详细一点，我看还有人和我一样，还是搞不清楚为什么c索
引和ca索引一样。

作者回复: InnoDB会把主键字段放到索引定义字段后面，

当然同时也会去重。

所以，当主键是(a,b)的时候，

定义为c的索引，实际上是（c,a,b);

定义为(c,a)的索引，实际上是(c,a,b)

你看着加是相同的

ps 定义为(c,b）的索引，实际上是（c,b,a)

 3  32

栋能
2018-11-26

没搞懂c的索引树为什么和ca是一样的. c索引树中c有序，(a,b)随意序的呀？这能代表c与ca
索引树一致吗？

 1  28

Tony Du
2018-11-27

基于文中的例子MDL（metadata lock)，自己做了一个实验（稍微有一些小改动在sessio
n D上），
session A: begin; select * from t limit 1; 最先启动sessionA
session B: begin; select * from t limit 1; 紧接着启动sessionB
session C: alter table t add f int; 然后再是启动sessionC …
展开

作者回复: 你用MySQL 客户端试试，我跑出来是文中的顺序哈。给我一下你的MySQL 版本号和w

orkbench版本号

 4  25

阿建
2018-11-26

没明白为什么ca索引建出来的模型和c建出来的一样？

展开

 1  25

Aurora
2018-11-26

如果mysqldump 备份的是整个schema，某个小表t1只是该schema上其中有一张表
情况1：
master上对小表t1的DDL传输到slave去应用的时刻，mysqldump已经备份完了t1表的数
据，此时slave 同步正常，不会有问题。
 …
展开

  18

Mr.Strive.Z.H.L
2018-12-07

关于文中小表DDL的疑惑：
sessionC（DDL操作）被前面的sessionA和B（查询操作，获取MDL 读锁）所阻塞。这里
sessionC的DDL操作任务肯定是处于等待的，后续来的sessionD（查询操作）为什么会被
sessionC所阻塞？
我理解的是sessionC现在都还没有进行DDL操作，没有获取到MDL写锁，为什么session…
展开

作者回复: “难道”正确😄

  13

倪大人
2018-11-26

思考题：
由于先用–single-transaction做备份，所以备份线程会启动一个事务获取MDL读锁，文中
也说了“MDL 会直到事务提交才释放”，所以要一直等到备份完成主库来的DDL才会在从
库执行生效，且备份的数据里并不会有新增的这个列。
 …
展开

  11

知非
2018-11-26

表级锁的例子中：

lock tables t1 read, t2 write
说到“线程A不能读取T2”
查了一下MySQL Reference：
WRITE lock: …
展开

作者回复: 是的，文中写错了。我刚刚修改上去了。抱歉。谢谢提醒

  11

Jeremy
2018-11-26

对于思考题，索引ca里面，当a相同时，为什么b一定按照升序排列？

 1  10

柳树
2019-01-05

既然session C blocked，拿不到写锁，那么session D为什么会被blocked呢？

作者回复: 如果说设计初衷，是为了防饿死吧

  8

Tony Du
2018-11-28

基于文中的例子MDL（metadata lock)，自己做了一个实验（稍微有一些小改动在sessio
n D上），
session A: begin; select * from t limit 1; 最先启动sessionA
session B: begin; select * from t limit 1; 紧接着启动sessionB
session C: alter table t add f int; 然后再是启动sessionC …
展开

  8

Larwas
2018-12-12

上一节的问题，ca 索引的数据和 c 索引一样，是因为c索引查到数据时，回表后返回的数
据在主键索引已经排好，所以不需要 ca 索引做排序。做个记录，一开始没理解，刚刚想了
一下理解了。

  7

keepmoving
2018-11-26

请教，我们在一个mysql 5.7版本的分区大表上增加了一个字段，是在线更新表结构，原本
以为会很快，结果足足等了4个多小时。按您的说法系统能正常的做交易。之前上网查原
因，一种说法是mysql的表结构加字段，通过创建临时表，copy数据到临时表，再用有新
增字段的临时表替换原表的方式来处理。
1、请问以上说法是对的么？ …
展开

  7

forina
2018-11-27

老师 我想咨询一个问题 ，我有一个大表t 几百万条数据，a是主键(int类型)，另外有一个索
引（b,c,d），查询语句 select a from t where b=‘ZC1093’ and c=‘2018-07-31’
and d=‘AG011’ limit 1000,10 执行过程使用了索引只用了0.014s,查询语句 select a fr
om t where b=‘ZC1093’ and c=‘2018-07-31’ and d=‘AG011’ order by a li
mit 1000,10 执行过程也用了(b,c,d)这个索引 却用了34s 完成，两条查询语句结果也都…
展开

作者回复: 在《”order by 是怎么工作的”》 这篇会提到这个问题哈

  6

Tony Du
2018-11-27

基于文中的例子MDL（metadata lock)，自己做了一个实验（稍微有一些小改动在sessio
n D上），
session A: begin; select * from t limit 1; 最先启动sessionA
session B: begin; select * from t limit 1; 紧接着启动sessionB
session C: alter table t add f int; 然后再是启动sessionC …
展开

作者回复: 你这个例子里面，sessionD 被C堵住后是不能输入命令的，之后是什么动作之后，sess

ionD才能输入commit语句呢

  5

