
08 | 事务到底是隔离的还是不隔离的？
2018-11-30 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 19:01 大小 17.43M

我在第 3 篇文章和你讲事务隔离级别的时候提到过，如果是可重复读隔离级别，事务 T 启

动的时候会创建一个视图 read-view，之后事务 T 执行期间，即使有其他事务修改了数

据，事务 T 看到的仍然跟在启动时看到的一样。也就是说，一个在可重复读隔离级别下执

行的事务，好像与世无争，不受外界影响。



你好，我是林晓斌。

你现在看到的这篇文章是我重写过的。在第一版文章发布之后，我发现在介

绍事务可见性规则时，由于引入了太多概念，导致理解起来很困难。随后，

我索性就重写了这篇文章。

现在的用户留言中，还能看到第一版文章中引入的 up_limit_id 的概念，为了

避免大家产生误解，再此特地和大家事先说明一下。



 下载APP 

但是，我在上一篇文章中，和你分享行锁的时候又提到，一个事务要更新一行，如果刚好有

另外一个事务拥有这一行的行锁，它又不能这么超然了，会被锁住，进入等待状态。问题

是，既然进入了等待状态，那么等到这个事务自己获取到行锁要更新数据的时候，它读到的

值又是什么呢？

我给你举一个例子吧。下面是一个只有两行的表的初始化语句。

图 1 事务 A、B、C 的执行流程

这里，我们需要注意的是事务的启动时机。

begin/start transaction 命令并不是一个事务的起点，在执行到它们之后的第一个操作

InnoDB 表的语句，事务才真正启动。如果你想要马上启动一个事务，可以使用 start

1

2

3

4

5

6

mysql> CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `k` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, k) values(1,1),(2,2);

复制代码

transaction with consistent snapshot 这个命令。

还需要注意的是，在整个专栏里面，我们的例子中如果没有特别说明，都是默认

autocommit=1。

在这个例子中，事务 C 没有显式地使用 begin/commit，表示这个 update 语句本身就是

一个事务，语句完成的时候会自动提交。事务 B 在更新了行之后查询 ; 事务 A 在一个只读

事务中查询，并且时间顺序上是在事务 B 的查询之后。

这时，如果我告诉你事务 B 查到的 k 的值是 3，而事务 A 查到的 k 的值是 1，你是不是感

觉有点晕呢？

所以，今天这篇文章，我其实就是想和你说明白这个问题，希望借由把这个疑惑解开的过

程，能够帮助你对 InnoDB 的事务和锁有更进一步的理解。

在 MySQL 里，有两个“视图”的概念：

它没有物理结构，作用是事务执行期间用来定义“我能看到什么数据”。

在第 3 篇文章《事务隔离：为什么你改了我还看不见？》中，我跟你解释过一遍 MVCC 的

实现逻辑。今天为了说明查询和更新的区别，我换一个方式来说明，把 read view 拆开。

你可以结合这两篇文章的说明来更深一步地理解 MVCC。

“快照”在 MVCC 里是怎么工作的？

第一种启动方式，一致性视图是在第执行第一个快照读语句时创建的；

第二种启动方式，一致性视图是在执行 start transaction with consistent

snapshot 时创建的。

一个是 view。它是一个用查询语句定义的虚拟表，在调用的时候执行查询语句并生成结

果。创建视图的语法是 create view … ，而它的查询方法与表一样。

另一个是 InnoDB 在实现 MVCC 时用到的一致性读视图，即 consistent read view，用

于支持 RC（Read Committed，读提交）和 RR（Repeatable Read，可重复读）隔离

级别的实现。

https://time.geekbang.org/column/article/68963

在可重复读隔离级别下，事务在启动的时候就“拍了个快照”。注意，这个快照是基于整库

的。

这时，你会说这看上去不太现实啊。如果一个库有 100G，那么我启动一个事务，MySQL

就要拷贝 100G 的数据出来，这个过程得多慢啊。可是，我平时的事务执行起来很快啊。

实际上，我们并不需要拷贝出这 100G 的数据。我们先来看看这个快照是怎么实现的。

InnoDB 里面每个事务有一个唯一的事务 ID，叫作 transaction id。它是在事务开始的时

候向 InnoDB 的事务系统申请的，是按申请顺序严格递增的。

而每行数据也都是有多个版本的。每次事务更新数据的时候，都会生成一个新的数据版本，

并且把 transaction id 赋值给这个数据版本的事务 ID，记为 row trx_id。同时，旧的数据

版本要保留，并且在新的数据版本中，能够有信息可以直接拿到它。

也就是说，数据表中的一行记录，其实可能有多个版本 (row)，每个版本有自己的 row

trx_id。

如图 2 所示，就是一个记录被多个事务连续更新后的状态。

图 2 行状态变更图

图中虚线框里是同一行数据的 4 个版本，当前最新版本是 V4，k 的值是 22，它是被

transaction id 为 25 的事务更新的，因此它的 row trx_id 也是 25。

你可能会问，前面的文章不是说，语句更新会生成 undo log（回滚日志）吗？那么，

undo log 在哪呢？

实际上，图 2 中的三个虚线箭头，就是 undo log；而 V1、V2、V3 并不是物理上真实存

在的，而是每次需要的时候根据当前版本和 undo log 计算出来的。比如，需要 V2 的时

候，就是通过 V4 依次执行 U3、U2 算出来。

明白了多版本和 row trx_id 的概念后，我们再来想一下，InnoDB 是怎么定义那

个“100G”的快照的。

按照可重复读的定义，一个事务启动的时候，能够看到所有已经提交的事务结果。但是之

后，这个事务执行期间，其他事务的更新对它不可见。

因此，一个事务只需要在启动的时候声明说，“以我启动的时刻为准，如果一个数据版本是

在我启动之前生成的，就认；如果是我启动以后才生成的，我就不认，我必须要找到它的上

一个版本”。

当然，如果“上一个版本”也不可见，那就得继续往前找。还有，如果是这个事务自己更新

的数据，它自己还是要认的。

在实现上， InnoDB 为每个事务构造了一个数组，用来保存这个事务启动瞬间，当前正

在“活跃”的所有事务 ID。“活跃”指的就是，启动了但还没提交。

数组里面事务 ID 的最小值记为低水位，当前系统里面已经创建过的事务 ID 的最大值加 1

记为高水位。

这个视图数组和高水位，就组成了当前事务的一致性视图（read-view）。

而数据版本的可见性规则，就是基于数据的 row trx_id 和这个一致性视图的对比结果得到

的。

这个视图数组把所有的 row trx_id 分成了几种不同的情况。

图 3 数据版本可见性规则

这样，对于当前事务的启动瞬间来说，一个数据版本的 row trx_id，有以下几种可能：

1. 如果落在绿色部分，表示这个版本是已提交的事务或者是当前事务自己生成的，这个数

据是可见的；

2. 如果落在红色部分，表示这个版本是由将来启动的事务生成的，是肯定不可见的；

3. 如果落在黄色部分，那就包括两种情况

a. 若 row trx_id 在数组中，表示这个版本是由还没提交的事务生成的，不可见；

b. 若 row trx_id 不在数组中，表示这个版本是已经提交了的事务生成的，可见。

比如，对于图 2 中的数据来说，如果有一个事务，它的低水位是 18，那么当它访问这一行

数据时，就会从 V4 通过 U3 计算出 V3，所以在它看来，这一行的值是 11。

你看，有了这个声明后，系统里面随后发生的更新，是不是就跟这个事务看到的内容无关了

呢？因为之后的更新，生成的版本一定属于上面的 2 或者 3(a) 的情况，而对它来说，这些

新的数据版本是不存在的，所以这个事务的快照，就是“静态”的了。

所以你现在知道了，InnoDB 利用了“所有数据都有多个版本”的这个特性，实现了“秒

级创建快照”的能力。

接下来，我们继续看一下图 1 中的三个事务，分析下事务 A 的语句返回的结果，为什么是

k=1。

这里，我们不妨做如下假设：

1. 事务 A 开始前，系统里面只有一个活跃事务 ID 是 99；

2. 事务 A、B、C 的版本号分别是 100、101、102，且当前系统里只有这四个事务；

3. 三个事务开始前，(1,1）这一行数据的 row trx_id 是 90。

这样，事务 A 的视图数组就是 [99,100], 事务 B 的视图数组是 [99,100,101], 事务 C 的视

图数组是 [99,100,101,102]。

为了简化分析，我先把其他干扰语句去掉，只画出跟事务 A 查询逻辑有关的操作：

图 4 事务 A 查询数据逻辑图

从图中可以看到，第一个有效更新是事务 C，把数据从 (1,1) 改成了 (1,2)。这时候，这个

数据的最新版本的 row trx_id 是 102，而 90 这个版本已经成为了历史版本。

第二个有效更新是事务 B，把数据从 (1,2) 改成了 (1,3)。这时候，这个数据的最新版本（即

row trx_id）是 101，而 102 又成为了历史版本。

你可能注意到了，在事务 A 查询的时候，其实事务 B 还没有提交，但是它生成的 (1,3) 这

个版本已经变成当前版本了。但这个版本对事务 A 必须是不可见的，否则就变成脏读了。

好，现在事务 A 要来读数据了，它的视图数组是 [99,100]。当然了，读数据都是从当前版

本读起的。所以，事务 A 查询语句的读数据流程是这样的：

这样执行下来，虽然期间这一行数据被修改过，但是事务 A 不论在什么时候查询，看到这

行数据的结果都是一致的，所以我们称之为一致性读。

这个判断规则是从代码逻辑直接转译过来的，但是正如你所见，用于人肉分析可见性很麻

烦。

所以，我来给你翻译一下。一个数据版本，对于一个事务视图来说，除了自己的更新总是可

见以外，有三种情况：

1. 版本未提交，不可见；

2. 版本已提交，但是是在视图创建后提交的，不可见；

3. 版本已提交，而且是在视图创建前提交的，可见。

现在，我们用这个规则来判断图 4 中的查询结果，事务 A 的查询语句的视图数组是在事务

A 启动的时候生成的，这时候：

找到 (1,3) 的时候，判断出 row trx_id=101，比高水位大，处于红色区域，不可见；

接着，找到上一个历史版本，一看 row trx_id=102，比高水位大，处于红色区域，不可

见；

再往前找，终于找到了（1,1)，它的 row trx_id=90，比低水位小，处于绿色区域，可

见。

你看，去掉数字对比后，只用时间先后顺序来判断，分析起来是不是轻松多了。所以，后面

我们就都用这个规则来分析。

更新逻辑

细心的同学可能有疑问了：事务 B 的 update 语句，如果按照一致性读，好像结果不对

哦？

你看图 5 中，事务 B 的视图数组是先生成的，之后事务 C 才提交，不是应该看不见 (1,2)

吗，怎么能算出 (1,3) 来？

图 5 事务 B 更新逻辑图

(1,3) 还没提交，属于情况 1，不可见；

(1,2) 虽然提交了，但是是在视图数组创建之后提交的，属于情况 2，不可见；

(1,1) 是在视图数组创建之前提交的，可见。

是的，如果事务 B 在更新之前查询一次数据，这个查询返回的 k 的值确实是 1。

但是，当它要去更新数据的时候，就不能再在历史版本上更新了，否则事务 C 的更新就丢

失了。因此，事务 B 此时的 set k=k+1 是在（1,2）的基础上进行的操作。

所以，这里就用到了这样一条规则：更新数据都是先读后写的，而这个读，只能读当前的

值，称为“当前读”（current read）。

因此，在更新的时候，当前读拿到的数据是 (1,2)，更新后生成了新版本的数据 (1,3)，这个

新版本的 row trx_id 是 101。

所以，在执行事务 B 查询语句的时候，一看自己的版本号是 101，最新数据的版本号也是

101，是自己的更新，可以直接使用，所以查询得到的 k 的值是 3。

这里我们提到了一个概念，叫作当前读。其实，除了 update 语句外，select 语句如果加

锁，也是当前读。

所以，如果把事务 A 的查询语句 select * from t where id=1 修改一下，加上 lock in

share mode 或 for update，也都可以读到版本号是 101 的数据，返回的 k 的值是 3。下

面这两个 select 语句，就是分别加了读锁（S 锁，共享锁）和写锁（X 锁，排他锁）。

再往前一步，假设事务 C 不是马上提交的，而是变成了下面的事务 C’，会怎么样呢？

1

2

mysql> select k from t where id=1 lock in share mode;
mysql> select k from t where id=1 for update;

复制代码

图 6 事务 A、B、C'的执行流程

事务 C’的不同是，更新后并没有马上提交，在它提交前，事务 B 的更新语句先发起了。

前面说过了，虽然事务 C’还没提交，但是 (1,2) 这个版本也已经生成了，并且是当前的最

新版本。那么，事务 B 的更新语句会怎么处理呢？

这时候，我们在上一篇文章中提到的“两阶段锁协议”就要上场了。事务 C’没提交，也就

是说 (1,2) 这个版本上的写锁还没释放。而事务 B 是当前读，必须要读最新版本，而且必须

加锁，因此就被锁住了，必须等到事务 C’释放这个锁，才能继续它的当前读。

图 7 事务 B 更新逻辑图（配合事务 C'）

到这里，我们把一致性读、当前读和行锁就串起来了。

现在，我们再回到文章开头的问题：事务的可重复读的能力是怎么实现的？

可重复读的核心就是一致性读（consistent read）；而事务更新数据的时候，只能用当前

读。如果当前的记录的行锁被其他事务占用的话，就需要进入锁等待。

而读提交的逻辑和可重复读的逻辑类似，它们最主要的区别是：

在可重复读隔离级别下，只需要在事务开始的时候创建一致性视图，之后事务里的其他查

询都共用这个一致性视图；

在读提交隔离级别下，每一个语句执行前都会重新算出一个新的视图。

那么，我们再看一下，在读提交隔离级别下，事务 A 和事务 B 的查询语句查到的 k，分别

应该是多少呢？

这里需要说明一下，“start transaction with consistent snapshot; ”的意思是从这个语

句开始，创建一个持续整个事务的一致性快照。所以，在读提交隔离级别下，这个用法就没

意义了，等效于普通的 start transaction。

下面是读提交时的状态图，可以看到这两个查询语句的创建视图数组的时机发生了变化，就

是图中的 read view 框。（注意：这里，我们用的还是事务 C 的逻辑直接提交，而不是事

务 C’）

图 8 读提交隔离级别下的事务状态图

这时，事务 A 的查询语句的视图数组是在执行这个语句的时候创建的，时序上 (1,2)、(1,3)

的生成时间都在创建这个视图数组的时刻之前。但是，在这个时刻：

(1,3) 还没提交，属于情况 1，不可见；

所以，这时候事务 A 查询语句返回的是 k=2。

显然地，事务 B 查询结果 k=3。

小结

InnoDB 的行数据有多个版本，每个数据版本有自己的 row trx_id，每个事务或者语句有自

己的一致性视图。普通查询语句是一致性读，一致性读会根据 row trx_id 和一致性视图确

定数据版本的可见性。

而当前读，总是读取已经提交完成的最新版本。

你也可以想一下，为什么表结构不支持“可重复读”？这是因为表结构没有对应的行数据，

也没有 row trx_id，因此只能遵循当前读的逻辑。

当然，MySQL 8.0 已经可以把表结构放在 InnoDB 字典里了，也许以后会支持表结构的可

重复读。

又到思考题时间了。我用下面的表结构和初始化语句作为试验环境，事务隔离级别是可重复

读。现在，我要把所有“字段 c 和 id 值相等的行”的 c 值清零，但是却发现了一个“诡

异”的、改不掉的情况。请你构造出这种情况，并说明其原理。

(1,2) 提交了，属于情况 3，可见。

对于可重复读，查询只承认在事务启动前就已经提交完成的数据；

对于读提交，查询只承认在语句启动前就已经提交完成的数据；

1

2

3

4

5

6

mysql> CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `c` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, c) values(1,1),(2,2),(3,3),(4,4);

复制代码

复现出来以后，请你再思考一下，在实际的业务开发中有没有可能碰到这种情况？你的应用

代码会不会掉进这个“坑”里，你又是怎么解决的呢？

你可以把你的思考和观点写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢

你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上一篇文章最后，留给你的问题是：怎么删除表的前 10000 行。比较多的留言都选择

了第二种方式，即：在一个连接中循环执行 20 次 delete from T limit 500。

确实是这样的，第二种方式是相对较好的。

第一种方式（即：直接执行 delete from T limit 10000）里面，单个语句占用时间长，锁

的时间也比较长；而且大事务还会导致主从延迟。

第三种方式（即：在 20 个连接中同时执行 delete from T limit 500），会人为造成锁冲

突。

评论区留言点赞板：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

@Tony Du 的评论，详细而且准确。

@Knight²º¹⁸ 提到了如果可以加上特定条件，将这 10000 行天然分开，可以

考虑第三种。是的，实际上在操作的时候我也建议你尽量拿到 ID 再删除。

@荒漠甘泉 提了一个不错的问题，大家需要区分行锁、MDL 锁和表锁的区

别。对 InnoDB 表更新一行，可能过了 MDL 关，却被挡在行锁阶段。

上一篇 07 | 行锁功过：怎么减少行锁对性能的影响？

下一篇 09 | 普通索引和唯一索引，应该怎么选择？

精选留言 (270)  写留言

夏日雨 置顶

2018-11-30
 68

老师你好，有个问题不太理解，对于文中的例子假设transaction id为98的事务在事务A执
行select（Q2）之前更新了字段，那么事务A发现这个字段的row trx_id是98，比自己的
up_limit_id要小，那此时事务A不就获取到了transaction id为98的事务更新后的值了吗？
换句话说对于文中"之后的更新，产生的新的数据版本的 row trx_id 都会大于
up_limit_id"这句话不太理解， up_limit_id是已经提交事务id的最大值，那也可能存在一…
展开

作者回复: 你的问题被引用最多，我回复你哈，其它同学看过来😄

好吧，今天的课后问题其实比较简单，本来是隐藏在思考题里的彩蛋，被你问出来了哈。

Innodb 要保证这个规则：事务启动以前所有还没提交的事务，它都不可见。

但是只存一个已经提交事务的最大值是不够的。 因为存在一个问题，那些比最大值小的事务，之

后也可能更新（就是你说的98这个事务）

所以事务启动的时候还要保存“现在正在执行的所有事物ID列表”，如果一个row trx_id在这列表

中，也要不可见。

虽然踩破了彩蛋，还是赞你的思考哈，置顶让大家学习😄

约书亚 置顶

2018-11-30
 38

早。
思考题，RR下，用另外一个事物在update执行之前，先把所有c值修改，应该就可以。比
如update t set c = id + 1。
这个实际场景还挺常见——所谓的“乐观锁”。时常我们会基于version字段对row进行
cas式的更新，类似update ...set ... where id = xxx and version = xxx。如果version被…
展开

作者回复: 早

赞

置顶了

明天课后问题时间直接指针引用了哈😄

补充一下：上面说的“如果失败就重新起一个事务”，里面判断是否成功的标准是 affected_rows

是不是等于预期值。

比如我们这个例子里面预期值本来是4，当然实际业务中这种语句一般是匹配唯一主键，所以预期

住值一般是1。

ithunter 置顶

2018-12-05
 14

请教一个问题，业务上有这样的需求，A、B两个用户，如果互相喜欢，则成为好友。设计
上是有两张表，一个是like表，一个是friend表，like表有user_id、liker_id两个字段，我
设置为复合唯一索引即uk_user_id_liker_id。语句执行顺序是这样的：
以A喜欢B为例：
1、先查询对方有没有喜欢自己（B有没有喜欢A） …
展开

作者回复: 你这个问题很有趣。我想到一个不错的解法。不过我先置顶。让别的同学来回答看看。

好问题，谁有想法po出来。

心雨鑫晴 置顶

2018-12-03
 11

老师，我有一个问题。当开启事务时，需要保存活跃事务的数组（A），然后获取高水位
（B）。我的疑问就是，在这两个动作之间（A和B之间）会不会产生新的事务？如果产生
了新的事务，那么这个新的事务相对于当前事务就是可见的，不管有没有提交。

展开

作者回复: 好问题，有很深入的思考哈

代码实现上，获取视图数组和高水位是在事务系统的锁保护下做的，可以认为是原子操作，期间

不能创建事务。

Leo 置顶 
4

2018-11-30 4

老师在文中说: "所以，在执行事务 B 的 Q1 语句的时候，一看自己的版本号是 101，最新
数据的版本号也是 101，可以用，所以 Q1 得到的 k 的值是 3。"，
1. 这里不参考up_limit_id了吗？
2. 如果参考，事务B的up_limit_id是在执行update语句前重新计算的，还是在执行Q1语句
前重新计算的？

展开

作者回复: 1. 判断可见性两个规则：一个是up_limit_id ,另一个是“自己修改的”；这里用到第二

个规则

2. 这时候事务Bup_limit_id还是99

阿建 置顶

2018-11-30
 3

以下是一个错误的理解，在编写评论的过程中用前面刚学到的知识把自己的结论推翻，有
一种快感，所以还是决定发出来。 哈哈~

事务A(100) | 事务B(101)
------------------- …
展开

作者回复: �

我在学习过程中也是最喜欢这种“自己推翻自己结论”的快感

墨萧 置顶

2018-11-30
 2

可重复读情况下，事务c的102早于事务b的101，如果事务c再get k，那不是就取得101的
值了？不太明白。

作者回复: 咱们例子里面，事务C是直接提交的，再执行一个GET 就是另外一个事务了…

如果你说的是用begin 来启动一个多语句事务，那么事务c在更新后查询，还是看到row trx_id是

102的。 【注意：如果它还没提交，101根本生成不出来，因为事务B被行锁挡着呢】

某、人
2018-11-30

 45

这篇理论知识很丰富,需要先总结下
1.innodb支持RC和RR隔离级别实现是用的一致性视图(consistent read view)

2.事务在启动时会拍一个快照,这个快照是基于整个库的.
基于整个库的意思就是说一个事务内,整个库的修改对于该事务都是不可见的(对于快照读…
展开

作者回复: �

本篇知识点全get

Eric
2018-11-30

 16

我不是dba，这个课程还是需要一些基础才会更有帮助，有些章节对我来说确实看起来有
些吃力，但是在坚持，一遍看不懂看两遍、三遍，同时查漏补缺的去找一些资料补充盲
点，还组了个一起学习的群，希望能坚持下去，收获满满

展开

作者回复: 赞�

慢慢来

lucky st...
2018-12-15

 12

答案：
 分析： 假设有两个事务A和B， 且A事务是更新c=0的事务； 给定条件： 1， 事务A
update 语句已经执行成功， 说明没有另外一个活动中的事务在执行修改条件为id in
1,2,3,4或c in 1,2,3,4, 否则update会被锁阻塞； 2，事务A再次执行查询结果却是一样，
说明什么？说明事务B把id或者c给修改了， 而且已经提交了， 导致事务A“当前读”没…
展开

作者回复: 嗯嗯，分析得很对。

茅塞顿开的感觉很好，恭喜🎉🎈

☞

2018-12-03
 12

老师您好：
 今天重新看了一下这章您的修改地方，有个地方不明白
 落在黄色区域未提交事务集合部分怎么还要分类，低水位+高水位不就是这个数组了
吗，之前说，这个数组是记录事务启动瞬间，所有已经启动还未提交的事务ID，那不应该
是未提交的事务吗，不就应该是不可读的吗 …
展开

作者回复: 你设计一个“比低水位大，但是在当前事务启动前，就已经提交了的例子😄

薛畅
2018-12-03

 12

评论区的好多留言都认为 up_limit_id 是已经提交事务 id 的最大值，但是老师并未指出有
何不对，这让我很困惑。
老师在第二版的文章中通篇未提 up_limit_id，但是文章中有这么一段话：“InnoDB 为每
个事务构造了一个数组，用来保存这个事务启动启动瞬间，当前正在“活跃”的所有事务
ID。“活跃”指的就是，启动了但还没提交。数组里面事务 ID 的最小值记为低水位，当…
展开

作者回复: 在这版里面就是用“低水位”来作为活跃的最小ID的概念，

嗯其实是为了理解原理，用了不同的表述方式哈。

后面发现上一版的描述方法太公式化了，不利于人工分析

qpm
2018-12-01

 8

这是典型的“丢失更新”问题。一个事务的更新操作被另外一个事务的更新操作覆盖。在
RR状态下，普通select的时候是会获得旧版本数据的，但是update的时候就检索到最新的
数据。
解决方法：在读取的过程中设置一个排他锁，在 begin 事务里， select 语句中增加 for
update 后缀，这样可以保证别的事务在此事务完成commit前无法操作记录。参考…
展开

york
2018-11-30

 7

思考题为何我做出来成功修改为0了啊？

展开

作者回复: 那就是没复现😄

小卡向前冲
2018-12-12

 5

明白了，是我之前对高低水位的定义没有搞清楚：RR隔离级别下，事务A在执行Select
时，要重算read-view,此时数组是[99, 100, 101]，系统最大事务id是102，故低水位是
99，高水位是102+1=103。
这样就可以推出来了~~

展开

作者回复: 这回理解到位了😄

Sinyo
2018-12-07

 5

原来在同一行数据，最新版本的 row trx_id 是可能会小于旧版本的 row trx_id的，这里才
搞明白(惭愧脸)。。

作者回复: 赞，这个想通的感觉是很爽的

沙亮亮2018-12-07 
4

买了很多专栏，丁奇老师绝对是为读者考虑最为细致的，不管是从回复大家的提问，还是
从学习者角度考虑优化文章内容，最后到思考题的讲解，都是最细致的

展开

作者回复: 谢谢你，我倍受鼓舞呀😄

☞

2018-12-04
 4

老师回复“你设计一个“比低水位大，但是在当前事务启动前，就已经提交了的例子😄”
我意思说比低水位大的肯定是已经提交的事务啊，这样的话黄色区域肯定都是已经提交的
事务啊，为什么还要区分已经提交和还没有提交的事务呢？应该都是不可读的才对吧
如果是RC的话，可以理解成每次读之前会再去黄色区域看看有没有提交，但是RR应该就不
会再去读黄色区域了才对

展开

作者回复: 比低水位大的不一定已经提交了哦

比如一个事务启动时当前活跃事务是[99,100,102], 而101已经提交了

Sawyer
2018-12-03

 3

简单的总结一下：
1. 一致性识图，保证了当前事务从启动到提交期间，读取到的数据是一致的（包括当前事
务的修改）。
2. 当前读，保证了当前事务修改数据时，不会丢失其他事务已经提交的修改。
3. 两阶段锁协议，保证了当前事务修改数据时，不会丢失其他事务未提交的修改。 …
展开

way
2018-11-30

 3

MySQL分为当前读和快照读。一般情况下，select是快照读，dml操作是当前读。RC和RR
的区别就是创建read view 的时间不一样。rc在每个当前读的时候创建，rr在事物开始的时
候创建。

之前遇到个问题，请老师帮忙解答下。
rr 隔离级别 …
展开

作者回复: 是不是执行过程有误，整个过程里面并没有把b 赋值成10过，怎么会查出来10？

