
17 | 如何正确地显示随机消息？
2018-12-21 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 16:25 大小 15.04M

我在上一篇文章，为你讲解完 order by 语句的几种执行模式后，就想到了之前一个做英语

学习 App 的朋友碰到过的一个性能问题。今天这篇文章，我就从这个性能问题说起，和你

说说 MySQL 中的另外一种排序需求，希望能够加深你对 MySQL 排序逻辑的理解。

这个英语学习 App 首页有一个随机显示单词的功能，也就是根据每个用户的级别有一个单

词表，然后这个用户每次访问首页的时候，都会随机滚动显示三个单词。他们发现随着单词

表变大，选单词这个逻辑变得越来越慢，甚至影响到了首页的打开速度。

现在，如果让你来设计这个 SQL 语句，你会怎么写呢？

为了便于理解，我对这个例子进行了简化：去掉每个级别的用户都有一个对应的单词表这个

逻辑，直接就是从一个单词表中随机选出三个单词。这个表的建表语句和初始数据的命令如





 下载APP 

下：

为了便于量化说明，我在这个表里面插入了 10000 行记录。接下来，我们就一起看看要随

机选择 3 个单词，有什么方法实现，存在什么问题以及如何改进。

内存临时表

首先，你会想到用 order by rand() 来实现这个逻辑。

这个语句的意思很直白，随机排序取前 3 个。虽然这个 SQL 语句写法很简单，但执行流程

却有点复杂的。

我们先用 explain 命令来看看这个语句的执行情况。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

mysql> CREATE TABLE `words` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `word` varchar(64) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

delimiter ;;
create procedure idata()
begin
 declare i int;
 set i=0;
 while i<10000 do
 insert into words(word) values(concat(char(97+(i div 1000)), char(97+(i % 1000 div 1
 set i=i+1;
 end while;
end;;
delimiter ;

call idata();

复制代码

1 mysql> select word from words order by rand() limit 3;

复制代码

图 1 使用 explain 命令查看语句的执行情况

Extra 字段显示 Using temporary，表示的是需要使用临时表；Using filesort，表示的是

需要执行排序操作。

因此这个 Extra 的意思就是，需要临时表，并且需要在临时表上排序。

这里，你可以先回顾一下上一篇文章中全字段排序和 rowid 排序的内容。我把上一篇文章

的两个流程图贴过来，方便你复习。

图 2 全字段排序

https://time.geekbang.org/column/article/73479

图 3 rowid 排序

然后，我再问你一个问题，你觉得对于临时内存表的排序来说，它会选择哪一种算法呢？回

顾一下上一篇文章的一个结论：对于 InnoDB 表来说，执行全字段排序会减少磁盘访问，

因此会被优先选择。

我强调了“InnoDB 表”，你肯定想到了，对于内存表，回表过程只是简单地根据数据行的

位置，直接访问内存得到数据，根本不会导致多访问磁盘。优化器没有了这一层顾虑，那么

它会优先考虑的，就是用于排序的行越小越好了，所以，MySQL 这时就会选择 rowid 排

序。

理解了这个算法选择的逻辑，我们再来看看语句的执行流程。同时，通过今天的这个例子，

我们来尝试分析一下语句的扫描行数。

这条语句的执行流程是这样的：

1. 创建一个临时表。这个临时表使用的是 memory 引擎，表里有两个字段，第一个字段是

double 类型，为了后面描述方便，记为字段 R，第二个字段是 varchar(64) 类型，记为

字段 W。并且，这个表没有建索引。

2. 从 words 表中，按主键顺序取出所有的 word 值。对于每一个 word 值，调用 rand()

函数生成一个大于 0 小于 1 的随机小数，并把这个随机小数和 word 分别存入临时表的

R 和 W 字段中，到此，扫描行数是 10000。

3. 现在临时表有 10000 行数据了，接下来你要在这个没有索引的内存临时表上，按照字段

R 排序。

4. 初始化 sort_buffer。sort_buffer 中有两个字段，一个是 double 类型，另一个是整

型。

5. 从内存临时表中一行一行地取出 R 值和位置信息（我后面会和你解释这里为什么是“位

置信息”），分别存入 sort_buffer 中的两个字段里。这个过程要对内存临时表做全表扫

描，此时扫描行数增加 10000，变成了 20000。

6. 在 sort_buffer 中根据 R 的值进行排序。注意，这个过程没有涉及到表操作，所以不会

增加扫描行数。

7. 排序完成后，取出前三个结果的位置信息，依次到内存临时表中取出 word 值，返回给

客户端。这个过程中，访问了表的三行数据，总扫描行数变成了 20003。

接下来，我们通过慢查询日志（slow log）来验证一下我们分析得到的扫描行数是否正确。

其中，Rows_examined：20003 就表示这个语句执行过程中扫描了 20003 行，也就验证

了我们分析得出的结论。

这里插一句题外话，在平时学习概念的过程中，你可以经常这样做，先通过原理分析算出扫

描行数，然后再通过查看慢查询日志，来验证自己的结论。我自己就是经常这么做，这个过

程很有趣，分析对了开心，分析错了但是弄清楚了也很开心。

现在，我来把完整的排序执行流程图画出来。

1

2

3

Query_time: 0.900376 Lock_time: 0.000347 Rows_sent: 3 Rows_examined: 20003
SET timestamp=1541402277;
select word from words order by rand() limit 3;

复制代码

图 4 随机排序完整流程图 1

图中的 pos 就是位置信息，你可能会觉得奇怪，这里的“位置信息”是个什么概念？在上

一篇文章中，我们对 InnoDB 表排序的时候，明明用的还是 ID 字段。

这时候，我们就要回到一个基本概念：MySQL 的表是用什么方法来定位“一行数据”的。

在前面第 4和第 5篇介绍索引的文章中，有几位同学问到，如果把一个 InnoDB 表的主键删

掉，是不是就没有主键，就没办法回表了？

其实不是的。如果你创建的表没有主键，或者把一个表的主键删掉了，那么 InnoDB 会自

己生成一个长度为 6 字节的 rowid 来作为主键。

这也就是排序模式里面，rowid 名字的来历。实际上它表示的是：每个引擎用来唯一标识

数据行的信息。

对于有主键的 InnoDB 表来说，这个 rowid 就是主键 ID；

https://time.geekbang.org/column/article/69236
https://time.geekbang.org/column/article/69636

到这里，我来稍微小结一下：order by rand() 使用了内存临时表，内存临时表排序的时候

使用了 rowid 排序方法。

磁盘临时表

那么，是不是所有的临时表都是内存表呢？

其实不是的。tmp_table_size 这个配置限制了内存临时表的大小，默认值是 16M。如果临

时表大小超过了 tmp_table_size，那么内存临时表就会转成磁盘临时表。

磁盘临时表使用的引擎默认是 InnoDB，是由参数 internal_tmp_disk_storage_engine 控

制的。

当使用磁盘临时表的时候，对应的就是一个没有显式索引的 InnoDB 表的排序过程。

为了复现这个过程，我把 tmp_table_size 设置成 1024，把 sort_buffer_size 设置成

32768, 把 max_length_for_sort_data 设置成 16。

对于没有主键的 InnoDB 表来说，这个 rowid 就是由系统生成的；

MEMORY 引擎不是索引组织表。在这个例子里面，你可以认为它就是一个数组。因此，

这个 rowid 其实就是数组的下标。

1

2

3

4

5

6

7

8

9

10

11

set tmp_table_size=1024;
set sort_buffer_size=32768;
set max_length_for_sort_data=16;
/* 打开 optimizer_trace，只对本线程有效 */
SET optimizer_trace='enabled=on';

/* 执行语句 */
select word from words order by rand() limit 3;

/* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G

复制代码

图 5 OPTIMIZER_TRACE 部分结果

然后，我们来看一下这次 OPTIMIZER_TRACE 的结果。

因为将 max_length_for_sort_data 设置成 16，小于 word 字段的长度定义，所以我们看

到 sort_mode 里面显示的是 rowid 排序，这个是符合预期的，参与排序的是随机值 R 字

段和 rowid 字段组成的行。

这时候你可能心算了一下，发现不对。R 字段存放的随机值就 8 个字节，rowid 是 6 个字

节（至于为什么是 6 字节，就留给你课后思考吧），数据总行数是 10000，这样算出来就

有 140000 字节，超过了 sort_buffer_size 定义的 32768 字节了。但是，

number_of_tmp_files 的值居然是 0，难道不需要用临时文件吗？

这个 SQL 语句的排序确实没有用到临时文件，采用是 MySQL 5.6 版本引入的一个新的排

序算法，即：优先队列排序算法。接下来，我们就看看为什么没有使用临时文件的算法，也

就是归并排序算法，而是采用了优先队列排序算法。

其实，我们现在的 SQL 语句，只需要取 R 值最小的 3 个 rowid。但是，如果使用归并排序

算法的话，虽然最终也能得到前 3 个值，但是这个算法结束后，已经将 10000 行数据都排

好序了。

也就是说，后面的 9997 行也是有序的了。但，我们的查询并不需要这些数据是有序的。所

以，想一下就明白了，这浪费了非常多的计算量。

而优先队列算法，就可以精确地只得到三个最小值，执行流程如下：

1. 对于这 10000 个准备排序的 (R,rowid)，先取前三行，构造成一个堆；

（对数据结构印象模糊的同学，可以先设想成这是一个由三个元素组成的数组）

1. 取下一个行 (R’,rowid’)，跟当前堆里面最大的 R 比较，如果 R’小于 R，把这个

(R,rowid) 从堆中去掉，换成 (R’,rowid’)；

2. 重复第 2 步，直到第 10000 个 (R’,rowid’) 完成比较。

这里我简单画了一个优先队列排序过程的示意图。

图 6 优先队列排序算法示例

图 6 是模拟 6 个 (R,rowid) 行，通过优先队列排序找到最小的三个 R 值的行的过程。整个

排序过程中，为了最快地拿到当前堆的最大值，总是保持最大值在堆顶，因此这是一个最大

堆。

图 5 的 OPTIMIZER_TRACE 结果中，filesort_priority_queue_optimization 这个部分的

chosen=true，就表示使用了优先队列排序算法，这个过程不需要临时文件，因此对应的

number_of_tmp_files 是 0。

这个流程结束后，我们构造的堆里面，就是这个 10000 行里面 R 值最小的三行。然后，依

次把它们的 rowid 取出来，去临时表里面拿到 word 字段，这个过程就跟上一篇文章的

rowid 排序的过程一样了。

我们再看一下上面一篇文章的 SQL 查询语句：

你可能会问，这里也用到了 limit，为什么没用优先队列排序算法呢？原因是，这条 SQL 语

句是 limit 1000，如果使用优先队列算法的话，需要维护的堆的大小就是 1000 行的

(name,rowid)，超过了我设置的 sort_buffer_size 大小，所以只能使用归并排序算法。

总之，不论是使用哪种类型的临时表，order by rand() 这种写法都会让计算过程非常复

杂，需要大量的扫描行数，因此排序过程的资源消耗也会很大。

再回到我们文章开头的问题，怎么正确地随机排序呢？

随机排序方法

我们先把问题简化一下，如果只随机选择 1 个 word 值，可以怎么做呢？思路上是这样

的：

1. 取得这个表的主键 id 的最大值 M 和最小值 N;

2. 用随机函数生成一个最大值到最小值之间的数 X = (M-N)*rand() + N;

3. 取不小于 X 的第一个 ID 的行。

1 select city,name,age from t where city='杭州' order by name limit 1000 ;

复制代码

我们把这个算法，暂时称作随机算法 1。这里，我直接给你贴一下执行语句的序列:

这个方法效率很高，因为取 max(id) 和 min(id) 都是不需要扫描索引的，而第三步的

select 也可以用索引快速定位，可以认为就只扫描了 3 行。但实际上，这个算法本身并不

严格满足题目的随机要求，因为 ID 中间可能有空洞，因此选择不同行的概率不一样，不是

真正的随机。

比如你有 4 个 id，分别是 1、2、4、5，如果按照上面的方法，那么取到 id=4 的这一行的

概率是取得其他行概率的两倍。

如果这四行的 id 分别是 1、2、40000、40001 呢？这个算法基本就能当 bug 来看待了。

所以，为了得到严格随机的结果，你可以用下面这个流程:

1. 取得整个表的行数，并记为 C。

2. 取得 Y = floor(C * rand())。 floor 函数在这里的作用，就是取整数部分。

3. 再用 limit Y,1 取得一行。

我们把这个算法，称为随机算法 2。下面这段代码，就是上面流程的执行语句的序列。

1

2

3

mysql> select max(id),min(id) into @M,@N from t ;
set @X= floor((@M-@N+1)*rand() + @N);
select * from t where id >= @X limit 1;

复制代码

1

2

3

4

5

6

mysql> select count(*) into @C from t;
set @Y = floor(@C * rand());
set @sql = concat("select * from t limit ", @Y, ",1");
prepare stmt from @sql;
execute stmt;
DEALLOCATE prepare stmt;

复制代码

由于 limit 后面的参数不能直接跟变量，所以我在上面的代码中使用了 prepare+execute

的方法。你也可以把拼接 SQL 语句的方法写在应用程序中，会更简单些。

这个随机算法 2，解决了算法 1 里面明显的概率不均匀问题。

MySQL 处理 limit Y,1 的做法就是按顺序一个一个地读出来，丢掉前 Y 个，然后把下一个

记录作为返回结果，因此这一步需要扫描 Y+1 行。再加上，第一步扫描的 C 行，总共需要

扫描 C+Y+1 行，执行代价比随机算法 1 的代价要高。

当然，随机算法 2 跟直接 order by rand() 比起来，执行代价还是小很多的。

你可能问了，如果按照这个表有 10000 行来计算的话，C=10000，要是随机到比较大的 Y

值，那扫描行数也跟 20000 差不多了，接近 order by rand() 的扫描行数，为什么说随机

算法 2 的代价要小很多呢？我就把这个问题留给你去课后思考吧。

现在，我们再看看，如果我们按照随机算法 2 的思路，要随机取 3 个 word 值呢？你可以

这么做：

1. 取得整个表的行数，记为 C；

2. 根据相同的随机方法得到 Y1、Y2、Y3；

3. 再执行三个 limit Y, 1 语句得到三行数据。

我们把这个算法，称作随机算法 3。下面这段代码，就是上面流程的执行语句的序列。

小结

1

2

3

4

5

6

7

mysql> select count(*) into @C from t;
set @Y1 = floor(@C * rand());
set @Y2 = floor(@C * rand());
set @Y3 = floor(@C * rand());
select * from t limit @Y1，1； // 在应用代码里面取 Y1、Y2、Y3 值，拼出 SQL 后执行

select * from t limit @Y2，1；
select * from t limit @Y3，1；

复制代码

今天这篇文章，我是借着随机排序的需求，跟你介绍了 MySQL 对临时表排序的执行过

程。

如果你直接使用 order by rand()，这个语句需要 Using temporary 和 Using filesort，查

询的执行代价往往是比较大的。所以，在设计的时候你要量避开这种写法。

今天的例子里面，我们不是仅仅在数据库内部解决问题，还会让应用代码配合拼接 SQL 语

句。在实际应用的过程中，比较规范的用法就是：尽量将业务逻辑写在业务代码中，让数据

库只做“读写数据”的事情。因此，这类方法的应用还是比较广泛的。

最后，我给你留下一个思考题吧。

上面的随机算法 3 的总扫描行数是 C+(Y1+1)+(Y2+1)+(Y3+1)，实际上它还是可以继续优

化，来进一步减少扫描行数的。

我的问题是，如果你是这个需求的开发人员，你会怎么做，来减少扫描行数呢？说说你的方

案，并说明你的方案需要的扫描行数。

你可以把你的设计和结论写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢

你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上一篇文章最后留给你的问题是，select * from t where city in (“杭州”," 苏州 ")

order by name limit 100; 这个 SQL 语句是否需要排序？有什么方案可以避免排序？

虽然有 (city,name) 联合索引，对于单个 city 内部，name 是递增的。但是由于这条 SQL

语句不是要单独地查一个 city 的值，而是同时查了"杭州"和" 苏州 "两个城市，因此所有满

足条件的 name 就不是递增的了。也就是说，这条 SQL 语句需要排序。

那怎么避免排序呢？

这里，我们要用到 (city,name) 联合索引的特性，把这一条语句拆成两条语句，执行流程如

下：

1. 执行 select * from t where city=“杭州” order by name limit 100; 这个语句是不需

要排序的，客户端用一个长度为 100 的内存数组 A 保存结果。

2. 执行 select * from t where city=“苏州” order by name limit 100; 用相同的方法，

假设结果被存进了内存数组 B。

3. 现在 A 和 B 是两个有序数组，然后你可以用归并排序的思想，得到 name 最小的前

100 值，就是我们需要的结果了。

如果把这条 SQL 语句里“limit 100”改成“limit 10000,100”的话，处理方式其实也差不

多，即：要把上面的两条语句改成写：

和

这时候数据量较大，可以同时起两个连接一行行读结果，用归并排序算法拿到这两个结果集

里，按顺序取第 10001~10100 的 name 值，就是需要的结果了。

当然这个方案有一个明显的损失，就是从数据库返回给客户端的数据量变大了。

所以，如果数据的单行比较大的话，可以考虑把这两条 SQL 语句改成下面这种写法：

和

1 select * from t where city=" 杭州 " order by name limit 10100;

复制代码

1 select * from t where city=" 苏州 " order by name limit 10100。

复制代码

1 select id,name from t where city=" 杭州 " order by name limit 10100;

复制代码

复制代码

然后，再用归并排序的方法取得按 name 顺序第 10001~10100 的 name、id 的值，然后

拿着这 100 个 id 到数据库中去查出所有记录。

上面这些方法，需要你根据性能需求和开发的复杂度做出权衡。

评论区留言点赞板：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

1 select id,name from t where city=" 苏州 " order by name limit 10100。

评论区很多同学都提到不能排序，说明各位对索引的存储都理解对了。

@峰 同学提到了归并排序，是我们这个问题解法的核心思想；

@老杨同志 的回答中提到了“从业务上砍掉功能”，这个也确实是在业务设

计中可以考虑的一个方向；

@某、人 帮忙回答了 @发条橙子同学的问题，尤其是对问题一的回答，非常

精彩。

上 篇 16 | “ d b ”是怎么工作的？

上一篇

下一篇 18 | 为什么这些SQL语句逻辑相同，性能却差异巨大？

老杨同志 置顶

2018-12-21
 37

对应单词这种总量不是很多的数据，第一感觉应该装jdk缓存或者redis缓存。由于需要随机
访问，数组比较好。假如一个单词平均10个字节，10*10000，不到1M就装下了。
如果一定要用数据库来做，老师的方案1比较好，空洞的问题，如果单词库不变，可以在上
线前整理数据，把空洞处理调。比如：原来单词存在A表，新建B表 ，执行 insert into
B(word) select word from A. B的id是自增的，就会生成连续的主键。当然如果A表写比…
展开

作者回复: 重新整理表这个思路很赞�

看得出你是业务经验很丰富啊，这几次问题，对底层实现和业务功能的平衡，考虑点很不错

雪中鼠 置顶

2018-12-21
 4

如果按照业务需求，随机取三个，数据库还在设计阶段,可以增加一个主键字段,用来记录每
行记录的rowid，这样一万行，那就是连续的一万，然后随机，用该随机rowid回表查询该
行记录

作者回复: 这个也是个好方法，就是确保连续，可以快速的得到C和几个偏移量

吴宇晨
2018-12-21

 22

我觉得可以按Y排个序，第一条取完，拿到对应id，然后有一条语句就是where id大于
xxx，limit y2-y1，1

作者回复: 抓住了关键点�

精选留言 (79)  写留言

HuaMax
2018-12-21

 11

假设Y1，Y2，Y3是由小到大的三个数，则可以优化成这样，这样扫描行数为Y3
id1 = select * from t limit @Y1，1；
id2= select * from t where id > id1 limit @Y2-@Y1，1；
select * from t where id > id2 limit @Y3 - @Y2，1；

展开

作者回复: �

慧鑫coming
2018-12-21

 10

又到周五了，开心😜

展开

岁月安然
2018-12-21

 7

为什么随机算法2比order by rand()的代价小很多？
因为随机算法2进行limit获取数据的时候是根据主键排序获取的，主键天然索引排序。获取
到第9999条的数据也远比order by rand()方法的组成临时表R字段排序再获取rowid代价
小的多。

展开

作者回复: 对的，

你是第一个回答正文中间问题的😄�

freesia
2018-12-23

 5

从上一讲到这一讲，我发现老师在处理问题时，提出的方法就不再是单纯依靠MySQL解
决，因为可能会耗费很多资源，而是把问题分担一部分到客户端，比如客户端拿到数据后
再排序，或者客户端产生随机数再到MySQL中去查询。

展开

作者回复: 嗯嗯，MySQL 的代码和业务代码都是代码😄 配合起来用

李皮皮皮皮...
2018-12-21

 5

我经常在文中看到多个事务的执行时序。线下做实验的时候，是怎么保证能按这个时序执
行呢？

作者回复: 开两个窗口，按顺序执行命令哦

倪大人
2018-12-21

 5

课后题可以在随机出Y1、Y2、Y3后，算出Ymax、Ymin
再用 select id from t limit Ymin，(Ymax - Ymin)；
得到id集后算出Y1、Y2、Y3对应的三个id
最后 select * from t where id in (id1, id2, id3)
这样扫描的行数应该是C+Ymax+3

展开

作者回复: 漂亮

王飞洋
2018-12-21

 4

归并排序，优先队列，算法无处不在。

展开

作者回复: 要说算法还是隔壁王老师讲的专业，这里咱们就只追求MySQL 里面用到的，能给大家

讲明白就行了😄

某、人
2018-12-23

 3

今天这个问题我的理解转换成sql是:
mysql> select count(*) into @C from t1;
set @Y = floor(@C * rand());
set @Y1 = floor(@C * rand());
set @Y2 = floor(@C * rand()); …
展开

无眠
2018-12-21

 2

一直比较疑惑什么情况下会产生临时表Using temporary，希望老师指点下

作者回复: 查询需要临时表，比如我们这个例子里，需要临时表来放rand()结果

董航
2018-12-21

 2

堆结构，大顶树，小顶树！！！

展开

梦康
2019-02-13

 1

翻了下评论，没人问优先队列排序里的 row_size 和 rows_estimate 是如何计算的。想了
半天没想明白。

作者回复: 帮你贴下你自己的答案哈 https://mengkang.net/1338.html

Sinyo
2019-02-13

 1

你可能会问，这里也用到了 limit，为什么没用优先队列排序算法呢？原因是，这条 SQL
语句是 limit 1000，如果使用优先队列算法的话，需要维护的堆的大小就是 1000 行的
(name,rowid)，超过了我设置的 sort_buffer_size 大小，所以只能使用归并排序算法。

老师，上面的limit 1000 不是才14000么？14000小于32768的还是优先队列排序算法…
展开

作者回复: 没有少0哈

好问题

最小堆的维护代价比数组大，不只是14*1000哦

linqw
2019-01-29

 1

看了两篇的排序，想大致写下自己的理解，老师帮忙看下哦
1、order by内部会使用归并排序，根据sort buffer size决定是否需要使用外部（磁盘）排
序，根据max_length_for_sort_data决定使用全字段排序还是rowid排序，不同点是rowid
排序，只使用排序字段和主键，会在原有的基础上，多进行回表查询，多了磁盘操作，为
此可以使用复合查询，这样从索引中查询出来的数据，就是有序的，可以直接进行回表…
展开

作者回复: 2. 后面有一篇专门讲临时表的哈

3. 6个字节属于中规中矩，总是要选一个长度，max和min，默认是会走索引的

4. 这个就是rowid排序和全字段排序的区别。都有可能会选的，看单行大小

5. 看到现象带着问题gdb 效果不错（就是比较枯燥）

路过
2018-12-22

 1

老师，我为快速执行存储过程。把参数位置为：
innodb_flush_log_at_trx_commit=2
sync_binlog=0
执行马上就结束了。否则要等很久。请教老师，上面修改后，数据和log还没有真正刷到磁
盘。请问我在哪里可以看到相关的信息。 …
展开

作者回复: 确实没地方看😓

风动草
2018-12-22

 1

老师好！您说的在建二级索引的过程中，是把主键取出来构造二级索引，而且要读全表，
这个读全表意思是不是，读了主键，就意味着主键的叶子节点也一起读出来了？

作者回复: 是的

银太@巨益...
2018-12-21

 1

请教下老师：
表A有sku和warehouse两个字段组成的唯一索引,udx_sku_warehouse，高并发下容易死
锁
执行的语句：update A set quantity=quantity+1 where sku=xx and warehouse=xx
查看死锁的日志：两个事务都在等待udx_sku_warehouse的X锁，但两个事务修改的并…
展开

作者回复: 你一个事务里面是不是不止一个这样的update 语句?

penelopewu
2018-12-21

 1

运行老师给的存储过程特别慢，怎么排查原因呢，mysql版本是8.0.13

作者回复: 把innodb_flush_at_trx_commit设置成2，sync_binlog设置成1000看看

