
35 | join语句怎么优化？
2019-02-01 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 16:36 大小 15.21M

在上一篇文章中，我和你介绍了 join 语句的两种算法，分别是 Index Nested-Loop

Join(NLJ) 和 Block Nested-Loop Join(BNL)。

我们发现在使用 NLJ 算法的时候，其实效果还是不错的，比通过应用层拆分成多个语句然

后再拼接查询结果更方便，而且性能也不会差。

但是，BNL 算法在大表 join 的时候性能就差多了，比较次数等于两个表参与 join 的行数

的乘积，很消耗 CPU 资源。

当然了，这两个算法都还有继续优化的空间，我们今天就来聊聊这个话题。

为了便于分析，我还是创建两个表 t1、t2 来和你展开今天的问题。





 下载APP 



为了便于后面量化说明，我在表 t1 里，插入了 1000 行数据，每一行的 a=1001-id 的

值。也就是说，表 t1 中字段 a 是逆序的。同时，我在表 t2 中插入了 100 万行数据。

Multi-Range Read 优化

在介绍 join 语句的优化方案之前，我需要先和你介绍一个知识点，即：Multi-Range

Read 优化 (MRR)。这个优化的主要目的是尽量使用顺序读盘。

在第 4 篇文章中，我和你介绍 InnoDB 的索引结构时，提到了“回表”的概念。我们先来

回顾一下这个概念。回表是指，InnoDB 在普通索引 a 上查到主键 id 的值后，再根据一个

个主键 id 的值到主键索引上去查整行数据的过程。

然后，有同学在留言区问到，回表过程是一行行地查数据，还是批量地查数据？

我们先来看看这个问题。假设，我执行这个语句：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

create table t1(id int primary key, a int, b int, index(a));
create table t2 like t1;
drop procedure idata;
delimiter ;;
create procedure idata()
begin
  declare i int;
  set i=1;
  while(i<=1000)do
    insert into t1 values(i, 1001-i, i);
    set i=i+1;
  end while;
  
  set i=1;
  while(i<=1000000)do
    insert into t2 values(i, i, i);
    set i=i+1;
  end while;
 
end;;
delimiter ;
call idata();

复制代码

复制代码

https://time.geekbang.org/column/article/69236


主键索引是一棵 B+ 树，在这棵树上，每次只能根据一个主键 id 查到一行数据。因此，回

表肯定是一行行搜索主键索引的，基本流程如图 1 所示。

图 1 基本回表流程

如果随着 a 的值递增顺序查询的话，id 的值就变成随机的，那么就会出现随机访问，性能

相对较差。虽然“按行查”这个机制不能改，但是调整查询的顺序，还是能够加速的。

因为大多数的数据都是按照主键递增顺序插入得到的，所以我们可以认为，如果按照主键的

递增顺序查询的话，对磁盘的读比较接近顺序读，能够提升读性能。

这，就是 MRR 优化的设计思路。此时，语句的执行流程变成了这样：

1 select * from t1 where a>=1 and a<=100;



1. 根据索引 a，定位到满足条件的记录，将 id 值放入 read_rnd_buffer 中 ;

2. 将 read_rnd_buffer 中的 id 进行递增排序；

3. 排序后的 id 数组，依次到主键 id 索引中查记录，并作为结果返回。

这里，read_rnd_buffer 的大小是由 read_rnd_buffer_size 参数控制的。如果步骤 1 中，

read_rnd_buffer 放满了，就会先执行完步骤 2 和 3，然后清空 read_rnd_buffer。之后继

续找索引 a 的下个记录，并继续循环。

另外需要说明的是，如果你想要稳定地使用 MRR 优化的话，需要设置set

optimizer_switch="mrr_cost_based=off"。（官方文档的说法，是现在的优化器

策略，判断消耗的时候，会更倾向于不使用 MRR，把 mrr_cost_based 设置为 off，就是

固定使用 MRR 了。）

下面两幅图就是使用了 MRR 优化后的执行流程和 explain 结果。

图 2 MRR 执行流程



图 3 MRR 执行流程的 explain 结果

从图 3 的 explain 结果中，我们可以看到 Extra 字段多了 Using MRR，表示的是用上了

MRR 优化。而且，由于我们在 read_rnd_buffer 中按照 id 做了排序，所以最后得到的结

果集也是按照主键 id 递增顺序的，也就是与图 1 结果集中行的顺序相反。

到这里，我们小结一下。

MRR 能够提升性能的核心在于，这条查询语句在索引 a 上做的是一个范围查询（也就是

说，这是一个多值查询），可以得到足够多的主键 id。这样通过排序以后，再去主键索引

查数据，才能体现出“顺序性”的优势。

Batched Key Access

理解了 MRR 性能提升的原理，我们就能理解 MySQL 在 5.6 版本后开始引入的 Batched

Key Access(BKA) 算法了。这个 BKA 算法，其实就是对 NLJ 算法的优化。

我们再来看看上一篇文章中用到的 NLJ 算法的流程图：



图 4 Index Nested-Loop Join 流程图

NLJ 算法执行的逻辑是：从驱动表 t1，一行行地取出 a 的值，再到被驱动表 t2 去做

join。也就是说，对于表 t2 来说，每次都是匹配一个值。这时，MRR 的优势就用不上了。

那怎么才能一次性地多传些值给表 t2 呢？方法就是，从表 t1 里一次性地多拿些行出来，

一起传给表 t2。

既然如此，我们就把表 t1 的数据取出来一部分，先放到一个临时内存。这个临时内存不是

别人，就是 join_buffer。

通过上一篇文章，我们知道 join_buffer 在 BNL 算法里的作用，是暂存驱动表的数据。但

是在 NLJ 算法里并没有用。那么，我们刚好就可以复用 join_buffer 到 BKA 算法中。

如图 5 所示，是上面的 NLJ 算法优化后的 BKA 算法的流程。



图 5 Batched Key Access 流程

图中，我在 join_buffer 中放入的数据是 P1~P100，表示的是只会取查询需要的字段。当

然，如果 join buffer 放不下 P1~P100 的所有数据，就会把这 100 行数据分成多段执行上

图的流程。

那么，这个 BKA 算法到底要怎么启用呢？

如果要使用 BKA 优化算法的话，你需要在执行 SQL 语句之前，先设置

其中，前两个参数的作用是要启用 MRR。这么做的原因是，BKA 算法的优化要依赖于

MRR。

1 set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

复制代码



BNL 算法的性能问题

说完了 NLJ 算法的优化，我们再来看 BNL 算法的优化。

我在上一篇文章末尾，给你留下的思考题是，使用 Block Nested-Loop Join(BNL) 算法

时，可能会对被驱动表做多次扫描。如果这个被驱动表是一个大的冷数据表，除了会导致

IO 压力大以外，还会对系统有什么影响呢？

在第 33 篇文章中，我们说到 InnoDB 的 LRU 算法的时候提到，由于 InnoDB 对 Bufffer

Pool 的 LRU 算法做了优化，即：第一次从磁盘读入内存的数据页，会先放在 old 区域。

如果 1 秒之后这个数据页不再被访问了，就不会被移动到 LRU 链表头部，这样对 Buffer

Pool 的命中率影响就不大。

但是，如果一个使用 BNL 算法的 join 语句，多次扫描一个冷表，而且这个语句执行时间超

过 1 秒，就会在再次扫描冷表的时候，把冷表的数据页移到 LRU 链表头部。

这种情况对应的，是冷表的数据量小于整个 Buffer Pool 的 3/8，能够完全放入 old 区域的

情况。

如果这个冷表很大，就会出现另外一种情况：业务正常访问的数据页，没有机会进入

young 区域。

由于优化机制的存在，一个正常访问的数据页，要进入 young 区域，需要隔 1 秒后再次被

访问到。但是，由于我们的 join 语句在循环读磁盘和淘汰内存页，进入 old 区域的数据

页，很可能在 1 秒之内就被淘汰了。这样，就会导致这个 MySQL 实例的 Buffer Pool 在

这段时间内，young 区域的数据页没有被合理地淘汰。

也就是说，这两种情况都会影响 Buffer Pool 的正常运作。

大表 join 操作虽然对 IO 有影响，但是在语句执行结束后，对 IO 的影响也就结束了。但

是，对 Buffer Pool 的影响就是持续性的，需要依靠后续的查询请求慢慢恢复内存命中

率。

为了减少这种影响，你可以考虑增大 join_buffer_size 的值，减少对被驱动表的扫描次数。

也就是说，BNL 算法对系统的影响主要包括三个方面：

https://time.geekbang.org/column/article/79407


1. 可能会多次扫描被驱动表，占用磁盘 IO 资源；

2. 判断 join 条件需要执行 M*N 次对比（M、N 分别是两张表的行数），如果是大表就会

占用非常多的 CPU 资源；

3. 可能会导致 Buffer Pool 的热数据被淘汰，影响内存命中率。

我们执行语句之前，需要通过理论分析和查看 explain 结果的方式，确认是否要使用 BNL

算法。如果确认优化器会使用 BNL 算法，就需要做优化。优化的常见做法是，给被驱动表

的 join 字段加上索引，把 BNL 算法转成 BKA 算法。

接下来，我们就具体看看，这个优化怎么做？

BNL 转 BKA

一些情况下，我们可以直接在被驱动表上建索引，这时就可以直接转成 BKA 算法了。

但是，有时候你确实会碰到一些不适合在被驱动表上建索引的情况。比如下面这个语句：

我们在文章开始的时候，在表 t2 中插入了 100 万行数据，但是经过 where 条件过滤后，

需要参与 join 的只有 2000 行数据。如果这条语句同时是一个低频的 SQL 语句，那么再为

这个语句在表 t2 的字段 b 上创建一个索引就很浪费了。

但是，如果使用 BNL 算法来 join 的话，这个语句的执行流程是这样的：

1. 把表 t1 的所有字段取出来，存入 join_buffer 中。这个表只有 1000 行，

join_buffer_size 默认值是 256k，可以完全存入。

2. 扫描表 t2，取出每一行数据跟 join_buffer 中的数据进行对比，

1 select * from t1 join t2 on (t1.b=t2.b) where t2.b>=1 and t2.b<=2000;

复制代码

如果不满足 t1.b=t2.b，则跳过；

如果满足 t1.b=t2.b, 再判断其他条件，也就是是否满足 t2.b 处于 [1,2000] 的条件，

如果是，就作为结果集的一部分返回，否则跳过。



我在上一篇文章中说过，对于表 t2 的每一行，判断 join 是否满足的时候，都需要遍历

join_buffer 中的所有行。因此判断等值条件的次数是 1000*100 万 =10 亿次，这个判断

的工作量很大。

图 6 explain 结果

图 7 语句执行时间

可以看到，explain 结果里 Extra 字段显示使用了 BNL 算法。在我的测试环境里，这条语

句需要执行 1 分 11 秒。

在表 t2 的字段 b 上创建索引会浪费资源，但是不创建索引的话这个语句的等值条件要判断

10 亿次，想想也是浪费。那么，有没有两全其美的办法呢？

这时候，我们可以考虑使用临时表。使用临时表的大致思路是：

1. 把表 t2 中满足条件的数据放在临时表 tmp_t 中；

2. 为了让 join 使用 BKA 算法，给临时表 tmp_t 的字段 b 加上索引；

3. 让表 t1 和 tmp_t 做 join 操作。

此时，对应的 SQL 语句的写法如下：

1

2

3

create temporary table temp_t(id int primary key, a int, b int, index(b))engine=innodb;
insert into temp_t select * from t2 where b>=1 and b<=2000;
select * from t1 join temp_t on (t1.b=temp_t.b);

复制代码



图 8 就是这个语句序列的执行效果。

图 8 使用临时表的执行效果

可以看到，整个过程 3 个语句执行时间的总和还不到 1 秒，相比于前面的 1 分 11 秒，性

能得到了大幅提升。接下来，我们一起看一下这个过程的消耗：

1. 执行 insert 语句构造 temp_t 表并插入数据的过程中，对表 t2 做了全表扫描，这里扫描

行数是 100 万。

2. 之后的 join 语句，扫描表 t1，这里的扫描行数是 1000；join 比较过程中，做了 1000

次带索引的查询。相比于优化前的 join 语句需要做 10 亿次条件判断来说，这个优化效

果还是很明显的。

总体来看，不论是在原表上加索引，还是用有索引的临时表，我们的思路都是让 join 语句

能够用上被驱动表上的索引，来触发 BKA 算法，提升查询性能。

扩展 -hash join

看到这里你可能发现了，其实上面计算 10 亿次那个操作，看上去有点儿傻。如果

join_buffer 里面维护的不是一个无序数组，而是一个哈希表的话，那么就不是 10 亿次判

断，而是 100 万次 hash 查找。这样的话，整条语句的执行速度就快多了吧？

确实如此。



这，也正是 MySQL 的优化器和执行器一直被诟病的一个原因：不支持哈希 join。并且，

MySQL 官方的 roadmap，也是迟迟没有把这个优化排上议程。

实际上，这个优化思路，我们可以自己实现在业务端。实现流程大致如下：

1. select * from t1;取得表 t1 的全部 1000 行数据，在业务端存入一个 hash 结构，

比如 C++ 里的 set、PHP 的数组这样的数据结构。

2. select * from t2 where b>=1 and b<=2000; 获取表 t2 中满足条件的 2000 行

数据。

3. 把这 2000 行数据，一行一行地取到业务端，到 hash 结构的数据表中寻找匹配的数据。

满足匹配的条件的这行数据，就作为结果集的一行。

理论上，这个过程会比临时表方案的执行速度还要快一些。如果你感兴趣的话，可以自己验

证一下。

小结

今天，我和你分享了 Index Nested-Loop Join（NLJ）和 Block Nested-Loop

Join（BNL）的优化方法。

在这些优化方法中：

1. BKA 优化是 MySQL 已经内置支持的，建议你默认使用；

2. BNL 算法效率低，建议你都尽量转成 BKA 算法。优化的方向就是给被驱动表的关联字段

加上索引；

3. 基于临时表的改进方案，对于能够提前过滤出小数据的 join 语句来说，效果还是很好

的；

4. MySQL 目前的版本还不支持 hash join，但你可以配合应用端自己模拟出来，理论上效

果要好于临时表的方案。

最后，我给你留下一道思考题吧。

我们在讲 join 语句的这两篇文章中，都只涉及到了两个表的 join。那么，现在有一个三个

表 join 的需求，假设这三个表的表结构如下：



语句的需求实现如下的 join 逻辑：

现在为了得到最快的执行速度，如果让你来设计表 t1、t2、t3 上的索引，来支持这个 join

语句，你会加哪些索引呢？

同时，如果我希望你用 straight_join 来重写这个语句，配合你创建的索引，你就需要安排

连接顺序，你主要考虑的因素是什么呢？

你可以把你的方案和分析写在留言区，我会在下一篇文章的末尾和你讨论这个问题。感谢你

的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上篇文章最后留给你的问题，已经在本篇文章中解答了。

这里我再根据评论区留言的情况，简单总结下。根据数据量的大小，有这么两种情况：

1

2

3

4

5

6

7

8

9

10

11

CREATE TABLE `t1` (
 `id` int(11) NOT NULL,
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 `c` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;
 
create table t2 like t1;
create table t3 like t2;
insert into ... // 初始化三张表的数据

复制代码

1 select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=X and t2.c>=Y 

复制代码

@长杰 和 @老杨同志 提到了数据量小于 old 区域内存的情况；

@Zzz 同学，很认真地看了其他同学的评论，并且提了一个很深的问题。对被驱动表数据

量大于 Buffer Pool 的场景，做了很细致的推演和分析。



给这些同学点赞，非常好的思考和讨论。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 34 | 到底可不可以使用join？

下一篇 36 | 为什么临时表可以重名？

IceGeek17
2019-02-18

 3

节后补课，有几个问题： 
 
问题一： 
对于BKA算法的流程理解，用文中的例子，先把t1表（小表）中查询需要的字段放入
join_buffer, 然后把join_buffer里的字段值批量传给t2表，先根据索引a查到id，然后得…
展开

3

精选留言 (44)  写留言



郭健2019-02-07 
3

老师，有几个问题还需要请教一下: 
1.上一章t1表100条数据，t21000条数据，mysql会每次都会准确的找出哪张表是合理的驱
动表吗？还是需要人为的添加straight_join。 
2.像left join这种，左边一定是驱动表吧？以左边为标准查看右边有符合的条件，拼成一条
数据，看到你给其他同学的评论说可能不是，这有些疑惑。 …
展开

作者回复: 1. 正常是会自己找到合理的，但是用前explain是好习惯哈 

2. 这个问题的展开我放到答疑文章中哈 

3. 这也是好问题，需要分析是使用哪种算法，也放到答疑文章展开哈。 

 

新年快乐~ 

LY
2019-02-01

 3

刚刚凌乱了的那个问题，经explain验证，explain SELECT a.* FROM sys_xxtx a JOIN
baq_ryxx r ON a.ryid = r.ID WHERE a.dwbh =
'7E0A13A14101D0A8E0430A0F23BCD0A8' ORDER BY txsj DESC LIMIT 0,20; 
使用的索引是txsj ； 
explain SELECT a.* FROM sys_xxtx a JOIN baq_ryxx r ON a.ryid = r.ID WHERE…
展开

作者回复: 嗯，这个跟我们第十篇那个例子挺像的 

 

我们把limit 1 改成limit 100的时候，MySQL认为，要扫描到“100行那么多”， 

你这里是limit 5000，200， 这个5000会让优化器认为，选txsj会要扫“很多行，可能很久” 

 

这个确实是优化器还不够完善的地方，有时候不得不用force index~

Mr.Strive...
2019-02-02

 2

老师您好，新年快乐~~ 
 
关于三表join有一个疑惑点需要确认： 



 
老师您在评论中说到，三表join不会是前两个表join后得到结果集，再和第三张表join。 …
展开

作者回复: 新年快乐，分析得很好。 

 

可以再补充一句，会更好理解你说的这个过程 ： 

  如果采用BKA进行优化,每多一个join，就多一个join_buffer

poppy
2019-02-01

 2

select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=X and
t2.c>=Y and t3.c>=Z; 
老师，我的理解是真正做join的三张表的大小实际上是t1.c>=X、t2.c>=Y、t3.c>=Z对应
满足条件的行数，为了方便快速定位到满足条件的数据，t1、t2和t3的c字段最好都建索
引。对于join操作，按道理mysql应该会优先选择join之后数量比较少的两张表先来进行…
展开

作者回复: 嗯 这个问题就是留给大家自己设定条件然后分析的，分析得不错哦

LY
2019-02-01

 2

order by cjsj desc limit 0,20 explain Extra只是显示 Using where ，执行时间 7秒钟 
order by cjsj desc limit 5000,20 explain Extra只是显示 Using index condition; Using
where; Using filesort, 执行时间 0.1 秒 
有些许的凌乱了@^^@

展开

作者回复: 这正常的，一种可能是这样的：  

   Using where 就是顺序扫，但是这个上要扫很久才能扫到满足条件的20个记录； 

   虽然有filesort，但是如果参与排序的行数少，可能速度就更快，而且limit 有堆排序优化哦

唯她命  1



2019-04-09

存储过程 插入100万 
Query OK, 1 row affected (1 hour 53 min 57.59 sec) 
这么恐怖😱！

展开

涛哥哥
2019-03-20

 1

老师，对于现在的固态硬盘，这样类似顺序读写的数据库优化，不就不起作用了啊？

作者回复: 固态硬盘的顺序写还是比随机写快的

Mr.Strive...
2019-02-13

 1

老师你好，今天在回顾这篇文章做总结的时候，突然有一个疑惑： 
 
我们假设t2的b上面有索引，该语句是左连接 
 
select * from t1 left join t2 on (t1.b=t2.b) where t2.b>=1 and t2.b<=2000; …
展开

作者回复: 你这两个语句是一样的。。是不是第二个语句多了left？ 

 

left join因为语义上要求所有左边表的数据行都必须存在结果里面，所以执行流程不太一样，我在

答疑文章中说哈

天王
2019-02-13

 1

BNL算法优化，BNL算法，如果读取的是冷表，而且量比较大，循环读取，第一次数据会
进入old区域，如果一秒之后没有访问，不会移到LRU头部，大表join对io影响查询完就结
束了，但是buffer pool需要大量的查询把冷数据冲掉。BNL算法有3个问题，1 多次扫描被
驱动表，占用磁盘io 2 判断join会耗费大量的cpu资源 3 会热数据淘汰，影响buffer pool
的命中率

展开



作者回复: 👍

天王
2019-02-13

 1

join语句的优化，NLJ算法的优化，MRR优化器会在join_buffer进行主键的排序，然后去
主键索引树上一个个的查找，因为按照主键顺序去主键索引树上查找，性能会比较高，
MRR优化接近顺序读，性能会比较高。BKA算法是对NLJ算法的优化，一次取出一批数据
的字段到join_buffer中，然后批量join，性能会比较好。BKA算法依赖于MRR，因为批量
join找到被驱动表的非聚集索引字段通过MRR去查找行数据

展开

作者回复: 👍

Geek_02538...
2019-02-02

 1

过年了，还有新文章，给个赞。 另，where 和 order 与索引的关系，都讲过了，group
by 是否也搞个篇章说一下。

展开

作者回复: 你说得对^_^ 第37篇就是，新年快乐

Ryoma
2019-02-02

 1

read_rnd_buffer_length 参数应该是 read_rnd_buffer_size，见文档：
https://dev.mysql.com/doc/refman/8.0/en/server-system-
variables.html#sysvar_read_rnd_buffer_size

作者回复: 你说得对，多谢 

 

发起勘误了 

 

新年快乐



老杨同志
2019-02-01

 1

我准备给 
t1增加索引c 
t2增加组合索引b,c 
t3增加组合索引b,c 
select * from t1 straight_join t2 on(t1.a=t2.a) straight_join t3 on (t2.b=t3.b) where…
展开

作者回复: 对，好问题，用了order by就不用MRR了

Destroy、
2019-02-01

 1

BNL 算法效率低，建议你都尽量转成 BKA 算法。优化的方向就是给驱动表的关联字段加上
索引； 
老师最后总结的时候，这句话后面那句，应该是给被驱动表的关联字段加上索引吧。

作者回复: 对的，👍细致 

 

已经发起勘误，谢谢你哦，新年快乐

郭江伟
2019-02-01

 1

select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=X and
t2.c>=Y and t3.c>=Z; 
这个语句建索引需要考虑三个表的数据量和相关字段的数据分布、选择率、每个条件返回
行数占比等 
我的测试场景是： …
展开



作者回复: 👍验证的结果最有说服力

asdf100
2019-02-01

 1

最近遇到这个需求，in里面的值个数有5万左右，出现的情况很少但存在，这种情况怎么处
理。？手动创建临时表再join？ 
 
另外in内的值用不用手动排序？

展开

作者回复: 不需要手动排序 

 

不过5万个值太凶残了，语句太长不太好 

 

这种就是手动创建内存临时表，建上hash索引，填入数据，然后join

Lukia
2019-04-10



老师好，请教一个关于mrr的问题，如果根据索引a的范围查询得到主键的集合值是很松散
的情况（不够紧凑连续，导致需要连续扫描大量的磁盘块），在这种情况下使用mrr的提升
可能也会得不偿失吧

My dream
2019-04-04



老师，有这样一种常用的场景：MySQL实现在同一表中的节点级联查询，我看网上很多方
案是通过函数来实现的： 
根据根节点id查询其所有子节点id（包含根节点） 
CREATE TABLE `sys_dept` ( 
  `dept_id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '部门ID', …
展开

~玲玲玲~... 



2019-03-31

老师好。 
这节课评论我看好多人都问三表连接时的步骤，您指出和第三个表关联不是前两个表的结
果集和第三张表关联。 
那是第一张表和第二张表关联，然后第一张表在和第三张表关联，最后这两个结果集在关
联？请纠正。

展开

作者回复: 不是，要看join算法。 

 

比如如果都是BKA算法，那就是1关联2再马上关联3，得到结果，这样循环


