
102 透彻研究通过explain命令得到的SQL执行计划（3）

今天我们继续来讲解不同SQL语句的执行计划长什么样子，来一起看一个包含子查询的SQL语句的执行
计划：

EXPLAIN SELECT * FROM t1 WHERE x1 IN (SELECT x1 FROM t2) OR x3 = 'xxxx';

这个SQL就稍微有一点点的复杂了，因为主SELECT语句的WHERE筛选条件是依赖于一个子查询的，而
且除此之外还有一个自己的WHERE筛选条件，那么他的执行计划长什么样子呢？我们看看。

+----+-------------+-------+------------+-------+---------------+----------+---------+------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows |
filtered | Extra |

+----+-------------+-------+------------+-------+---------------+----------+---------+------+------+----------+-------------+

| 1 | PRIMARY | t1 | NULL | ALL | index_x3 | NULL | NULL | NULL | 3457 | 100.00 |
Using where |

| 2 | SUBQUERY | t2 | NULL | index | index_x1 | index_x1 | 507 | NULL | 4687 | 100.00
| Using index |

+----+-------------+-------+------------+-------+---------------+----------+---------+------+------+----------+-------------+

这个执行计划值得我们好好分析一下，首先，第一条执行计划的id是1，第二条执行计划的id是2，这是
为什么？因为这个SQL里有两个SELECT，主查询SELECT的执行计划的id就是1，子查询SELECT的执行
计划的id就是2

其次，第一条执行计划里，select_type是PRIMARY，不是SIMPLE了，说明第一个执行计划的查询类型
是主查询的意思，对主查询而言，他有一个where条件是x3='xxx'，所以他的possible_keys里包含了
index_x3，就是x3字段的索引，但是他的key实际是NULL，而且type是ALL，所以说他最后没选择用x3
字段的索引，而是选择了全表扫描

这是为什么呢？其实很简单，可能他通过成本分析发现，使用x3字段的索引扫描xxx这个值，几乎就跟
全表扫描差不多，可能x3这个字段的值几乎都是xxx，所以最后就选择还不如直接全表扫描呢。

接着第二条执行计划，他的select_type是SUBQUERY，也就是子查询，子查询针对的是t2这个表，当然
子查询本身就是一个全表查询，但是对主查询而言，会使用x1 in 这个筛选条件，他这里type是index，
说明使用了扫描index_x1这个x1字段的二级索引的方式，直接扫描x1字段的二级索引，来跟子查询的结
果集做比对。

接着我们来看另外一个union的SQL语句：

EXPLAIN SELECT * FROM t1 UNION SELECT * FROM t2

这是一个典型的union语句，把两个表的查询结果合并起来，如果大家不理解union的意思，建议自己
去网上查一下

那么他的执行计划是什么样的呢？

+----+--------------+------------+------------+------+---------------+------+---------+------+------+----------+-----------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows |
filtered | Extra |

+----+--------------+------------+------------+------+---------------+------+---------+------+------+----------+-----------------+

| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 3457 | 100.00 |
NULL |

| 2 | UNION | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 4687 | 100.00 | NULL
|

| NULL | UNION RESULT | <union1,2> | NULL | ALL | NULL | NULL | NULL | NULL | NULL
| NULL | Using temporary |

+----+--------------+------------+------------+------+---------------+------+---------+------+------+----------+-----------------+

这个执行计划的第一条和第二条很好理解对吧？两个SELECT字句对应两个id，就是分别从t1表和t2表里
进行全表扫描罢了

接着第三条执行计划是什么呢？其实union字句默认的作用是把两个结果集合并起来还会进行去重，所
以第三条执行计划干的是个去重的活儿。

所以上面他的table是<union 1,2>，这就是一个临时表的表名，而且你看他的extra里，有一个using
temporary，也就是使用临时表的意思，他就是把结果集放到临时表里进行去重的，就这么个意思。当
然，如果你用的是union all，那么就不会进行去重了。

好了，今天的讲解就先到这里，后续我们会继续用很大篇幅分析MySQL的执行计划，实际上这个执行计
划可能是程序员最最需要掌握的关于数据库的知识之一了。

End

