
103 透彻研究通过explain命令得到的SQL执行计划（4）

之前我们已经初步的对SQL执行计划有了一个了解了，现在开始，我们就来更加细致的探索一下执行计
划的方方面面，把各种SQL语句的执行计划可能长什么样，都给大家分析出来，首先我们都知道，SQL
执行计划里有一个id的概念。

这个id是什么意思呢？简单来说，有一个SELECT子句就会对应一个id，如果有多个SELECT那么就会对
应多个id。但是往往有时候一个SELECT字句涉及到了多个表，所以会对应多条执行计划，此时可能多条
执行计划的id是一样的。

接着我们来看看这个select_type，select_type之前我们似乎看到过几种，有什么SIMPLE的，还有
primary和subquery的，那么这些select_type都是什么意思？除此之外，还有哪几种select_type呢？

首先要告诉大家的是，一般如果单表查询或者是多表连接查询，其实他们的select_type都是SIMPLE，
这个之前大家也都看到过了，意思就是简单的查询罢了。

然后如果是union语句的话，就类似于select * from t1 union select * from t2，那么会对应两条执行
计划，第一条执行计划是针对t1表的，select_type是PRIMARY，第二条执行计划是针对t2表的，
select_type是UNION，这就是在出现union语句的时候，他们就不一样了。

我们之前给大家讲过，在使用union语句的时候，会有第三条执行计划，这个第三条执行计划意思是针
对两个查询的结果依托一个临时表进行去重，这个第三条执行计划的select_type就是union_result。

另外，之前我们还看到过，如果是在SQL里有子查询，类似于select * from t1 where x1 in (select x1
ffrom t2) or x3='xxx'，此时其实会有两条执行计划，第一条执行计划的select_type是PRIMARY，第二
条执行计划的select_type是SUBQUERY，这个我们之前也看到过了。

那么现在我们来看一个稍微复杂一点的SQL语句：

EXPLAIN SELECT * FROM t1 WHERE x1 IN (SELECT x1 FROM t2 WHERE x1 = 'xxx' UNION SELECT x1
FROM t1 WHERE x1 = 'xxx');

这个SQL语句就稍微有点复杂了，因为他有一个外层查询，还有一个内层子查询，子查询里还有两个
SELECT语句进行union操作，那么我们来看看他的执行计划会是什么样的呢？

�+----+--------------------+------------+------------+------+---------------+----------+---------+-------+------+----------+------
--------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows |
filtered | Extra |

+----+--------------------+------------+------------+------+---------------+----------+---------+-------+------+----------+--------
------------------+

| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 3467 | 100.00 |
Using where |

| 2 | DEPENDENT SUBQUERY | t2 | NULL | ref | index_x1 | index_x1 | 899 | const | 59 |
100.00 | Using where; Using index |

| 3 | DEPENDENT UNION | t1 | NULL | ref | index_x1 | index_x1 | 899 | const | 45 |
100.00 | Using where; Using index |

| NULL | UNION RESULT | <union2,3> | NULL | ALL | NULL | NULL | NULL | NULL |
NULL | NULL | Using temporary |

+----+--------------------+------------+------------+------+---------------+----------+---------+-------+------+----------+--------
------------------+

第一个执行计划一看就是针对t1表查询的那个外层循环，select_type就是PRIMARY，因为这里涉及到了
子查询，所以外层查询的select_type一定是PRIMARY了。

然后第二个执行计划是子查询里针对t2表的那个查询语句，他的select_type是DEPENDENT
SUBQUERY，第三个执行计划是子查询里针对t1表的另外一个查询语句，select_type是DEPENDENT
UNION，因为第三个执行计划是在执行union后的查询，第四个执行计划的select_type是UNION
RESULT，因为在执行子查询里两个结果集的合并以及去重。

现在再来看一个更加复杂一点的SQL语句：

EXPLAIN SELECT * FROM (SELECT x1, count(*) as cnt FROM t1 GROUP BY x1) AS _t1 where cnt >
10;

这个SQL可有点麻烦了，他是FROM子句后跟了一个子查询，在子查询里是根据x1字段进行分组然后进
行count聚合操作，也就是统计出来x1这个字段每个值的个数，然后在外层则是针对这个内层查询的结
果集进行查询通过where条件来进行过滤，看看他的执行计划：

+----+-------------+------------+------------+-------+---------------+----------+---------+------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows |
filtered | Extra |

+----+-------------+------------+------------+-------+---------------+----------+---------+------+------+----------+-------------+

| 1 | PRIMARY | | NULL | ALL | NULL | NULL | NULL | NULL | 3468 | 33.33 | Using
where |

| 2 | DERIVED | t1 | NULL | index | index_x1 | index_x1 | 899 | NULL | 3568 | 100.00 |
Using index |

+----+-------------+------------+------------+-------+---------------+----------+---------+------+------+----------+-------------+

上面的执行计划里，我们其实应该先看第二条执行计划，他说的是子查询里的那个语句的执行计划，他
的select_type是derived，意思就是说，针对子查询执行后的结果集会物化为一个内部临时表，然后外
层查询是针对这个临时的物化表执行的。

大家可以看到，他这里执行分组聚合的时候，是使用的index_x1这个索引来进行的，type是index，意
思就是直接扫描偶了index_x1这个索引树的所有叶子节点，把x1相同值的个数都统计出来就可以了。

然后外层查询是第一个执行计划，select_type是PRIMARY，针对的table是，就是一个子查询结果集物
化形成的临时表，他是直接针对这个物化临时表进行了全表扫描根据where条件进行筛选的。

好，今天的执行计划就讲解到这里了，下次我们继续讲解。

End

