
111 案例实战：千万级用户场景下的运营系统SQL调优（3）

 

 

今天是我们第一个千万级用户场景下的运营系统SQL调优案例的最后一讲，也是最关键的一讲，我们要
根据SQL语句的执行计划找出他速度慢的原因所在，然后还得想办法去优化他的速度。

 

上一次我们已经对SQL语句的执行计划做了一个分析，知道了那个SQL语句的执行过程，今天就得对
SQL执行计划做一个透彻的分析，看看到底为什么他会慢

先来回看一下那个执行计划的内容：

 

+----+-------------+-------+------------+-------+---------------+----------+---------+------+

| id | select_type | table | type  | key | rows | filtered | Extra |

+----+-------------+-------+------------+-------+---------------+----------+---------+------+

| 1 | SIMPLE |  | ALL | NULL | NULL | 100.00 | NULL  |

| 1 | SIMPLE | users | ALL | NULL | 49651 | 10.00 | Using where; Using join buffer(Block Nested 
Loop)  |

| 2 | MATERIALIZED | users_extent_info | range | idx_login_time | 4561 | 100.00 | NULL  |

+----+-------------+-------+------------+-------+---------------+----------+---------+------+

 

之前说过，他执行的过程就是先执行了子查询查出来4561条数据，物化成了一个临时表，接着他对
users主表做了一个全表扫描，扫描的过程中把每一条数据都放到物化临时表里去做全表扫描，本质在
做join的事情。

 

那么这里为什么会跑的这么慢呢？其实很明显了，大家可以想一下，首先他对子查询的结果做了一次物
化临时表，落地磁盘了，接着他还全表扫描了users表的所有数据，每一条数据居然跑到一个没有索引
的物化临时表里再做一次全表扫描找匹配数据。

 

在这个过程里，对users表的全表扫描耗时不耗时？对users表的每一条数据跑到物化临时表里做全表扫
描，耗时不耗时？所以这个过程必然是非常慢的，几乎就没怎么用到索引。

 

那么接着我们就很奇怪了，为什么会出现上述的一个全表扫描users表，然后跟物化临时表做join，join
的时候还要全表扫描物化临时表的过程？

这里交大家一个技巧，就是在执行完上述SQL的EXPLAIN命令，看到执行计划之后，可以执行一下
show warnings命令。

 

这个show warnings命令此时显示出来的内容如下：



 

/* select#1 */ select count( d2. users . user_id `) AS COUNT(users.user_id)`

from d2 . users  users  semi join xxxxxx，下面省略一大段内容，因为可读性实在不高，大家关注的

应该是这里的semi join这个关键字

 

这里就显而易见了！MySQL在这里，生成执行计划的时候，自动就把一个普通的IN子句，“优化”成了基
于semi join来进行IN+子查询的操作，这个semi join是什么意思呢？

 

简单来说，对users表不是全表扫描了么？对users表里每一条数据，去对物化临时表全表扫描做semi 
join，不需要把users表里的数据真的跟物化临时表里的数据join上。只要users表里的一条数据，在物
化临时表里可以找到匹配的数据，那么users表里的数据就会返回，这就叫做semi join，他是用来筛选
的。

 

所以慢，也就慢在这里了，那既然知道了是semi join和物化临时表导致的问题，应该如何优化呢？

先别急，做个小实验，执行SET optimizer_switch='semijoin=off'，也就是关闭掉半连接优化，此时执
行EXPLAIN命令看一下此时的执行计划，发现此时会恢复为一个正常的状态。

 

就是有一个SUBQUERY的子查询，基于range方式去扫描索引搜索出4561条数据，接着有一个
PRIMARY类型的主查询，直接是基于id这个PRIMARY主键聚簇索引去执行的搜索，然后再把这个SQL语
句真实跑一下看看，发现性能一下子提升了几十倍，变成了100多毫秒！

 

因此到此为止，这个SQL的性能问题，真相大白，其实反而是他自动执行的semi join半连接优化，给咱
们导致了问题，一旦禁止掉semi join自动优化，用正常的方式让他基于索引去执行，性能那是嗖嗖的。

 

当然，在生产环境是不能随意更改这些设置的，所以后来我们想了一个办法，多种办法尝试去修改SQL
语句的写法，在不影响他语义的情况下，尽可能的去改变SQL语句的结构和格式，最终被我们尝试出了
一个写法，如下所示：

 

SELECT COUNT(id)

FROM users

WHERE ( id IN (SELECT user_id FROM users_extent_info WHERE latest_login_time < xxxxx) OR id IN 
(SELECT user_id FROM users_extent_info WHERE latest_login_time < -1))

 

在上述写法下，WHERE语句的OR后面的第二个条件，根本是不可能成立的，因为没有数据的
latest_login_time是小于-1的，所以那是不会影响SQL语义的，但是我们发现改变了SQL的写法之后，
执行计划也随之改变。

 

他并没有再进行semi join优化了，而是正常的用了子查询，主查询也是基于索引去执行的，这样我们在
线上上线了这个SQL语句，性能从几十秒一下子就变成几百毫秒了。



 

希望大家能认真体会这个SQL调优案例里的方法，其实最核心的，还是看懂SQL的执行计划，然后去分
析到底他为什么会那么慢，接着你就是要想办法避免他全表扫描之类的操作，一定要让他去用索引，用
索引是王道，是最重要的！

 

End


