
45 如果事务执行到一半要回滚怎么办？再探undo log回滚日志原理！

之前我们已经给大家深入讲解了在执行增删改操作时候的redo log的重做日志原理，其实说白了，就是
你对buffer pool里的缓存页执行增删改操作的时候，必须要写对应的redo log记录下来你做了哪些修改

如下图所示，redo log都是先进入redo log buffer中的一个block，然后事务提交的时候就会刷入磁盘文
件里去。

这样万一要是你提交事务了，结果事务修改的缓存页还没来得及刷入磁盘上的数据文件，此时你MySQL
关闭了或者是宕机了，那么buffer pool里被事务修改过的数据就全部都丢失了！

但是只要有redo log，你重启MySQL之后完全是可以把那些修改了缓存页，但是缓存页还没来得及刷入
磁盘的事务，他们所对应的redo log都加载出来，在buffer pool的缓存页里重做一遍，就可以保证事务
提交之后，修改的数据绝对不会丢！

相信之前讲解了redo log日志之后，大家对这块都理解的更加深刻了，那么今天我们就带着大家来探索
另外一种日志，就是undo log日志，也就是回滚日志，这种日志要应对的场景，就是事务回滚的场景！

那么首先大家先思考一个问题，假设现在我们一个事务里要执行一些增删改的操作，那么必然是先把对
应的数据页从磁盘加载出来放buffer pool的缓存页里，然后在缓存页里执行一通增删改，同时记录
redo log日志，对吧？如下图。

但是现在问题来了，万一要是一个事务里的一通增删改操作执行到了一半，结果就回滚事务了呢？

比如一个事务里有4个增删改操作，结果目前为止已经执行了2个增删改SQL了，已经更新了一些buffer
pool里的数据了，但是还有2个增删改SQL的逻辑还没执行，此时事务要回滚了怎么办？看图

这个时候就很尴尬了，如果你要回滚事务的话，那么必须要把已经在buffer pool的缓存页里执行的增删
改操作给回滚了

但是怎么回滚呢？毕竟无论是插入，还是更新，还是删除，该做的都已经做了啊！

所以在执行事务的时候，才必须引入另外一种日志，就是undo log回滚日志

这个回滚日志，他记录的东西其实非常简单，比如你要是在缓存页里执行了一个insert语句，那么此时
你在undo log日志里，对这个操作记录的回滚日志就必须是有一个主键和一个对应的delete操作，要能
让你把这次insert操作给回退了。

那么比如说你要是执行的是delete语句，那么起码你要把你删除的那条数据记录下来，如果要回滚，就
应该执行一个insert操作把那条数据插入回去。

如果你要是执行的是update语句，那么起码你要把你更新之前的那个值记录下来，回滚的时候重新
update一下，把你之前更新前的旧值给他更新回去。

如果你要是执行的是select语句呢？不好意思，select语句压根儿没有在buffer pool里执行任何修改，
所以根本不需要undo log！

好，所以我们来看下图，其实你在执行事务期间，之前我们最开始的几篇文章就讲过，你除了写redo
log日志还必须要写undo log日志，这个undo log日志是至关重要的，没有他，你根本都没办法回滚事
务！

明天我们继续来看看insert、delete和update几种操作的undo log到底长什么样，相信大家看完了，就
会对undo log这块机制有一个更加深刻的理解了。

End

