
18 | 总结课：数据结构、编程语句和基础算法体现了哪些数学思想？
2019-01-23 黄申

程序员的数学基础课 进入课程

讲述：黄申
时长 15:07 大小 13.85M

你好，我是黄申。

之前的 17 讲，我们从小处着眼，介绍了离散数学中最常用的一些知识点。我讲到了很多数

据结构、编程语句和基础性算法。这些知识点看似是孤立的，但是内部其实有很多联系。今

天这一节，我们就来总结一下前面讲过的内容，把之前讲过的内容串联起来。

数据结构

首先，我们来看一些基本的数据结构，你可别小看这些数据结构，它们其实就是一个个解决

问题的“模型”。有了这些模型，你就能把一个个具体的问题抽象化，然后再来解决。





 下载APP 

我们从最简单的数据结构数组开始说。自从你开始接触计算机编程，数组一定是你经常使用

的数据结构。它的特点你应该很清楚。数组可以通过下标，直接定位到所需的数据，因此数

组特别适合快速地随机访问。它常常和循环语句相结合，来实现迭代法，例如二分查找、斐

波那契数列等等。

另外，我们将要在“线性代数篇”介绍的矩阵，也可以使用多维数组来表示。不过，数组只

对稠密的数列更有效。如果数列非常稀疏，那么很多数组的元素就是无效值，浪费了存储空

间。此外，数组中元素的插入和删除也比较麻烦，需要进行数据的批量移动。

那么对于稀疏的数列而言，什么样的数据结构更有效呢？答案是链表。链表中的结点存储了

数据，而链表结点之间的相连关系，在 C 和 C++ 语言中是通过指针来实现的，而在 Java

语言中是通过对象引用来实现的。

链表的特点是不能通过下标来直接访问数据，而是必须按照存储的结构逐个读取。这样做的

优势在于，不必事先规定数据的数量，也不再需要保存无效的值，表示稀疏的数列时可以更

有效的利用存储空间，同时也利于数据的动态插入和删除。但是，相对于数组而言，链表无

法支持快速地随机访问，进行读写操作时就更耗时。

和数组一样，链表也可以是多维的。对于非常稀疏的矩阵，也可以用多维链表的结构来表

达。此外，在链表结构中，点和点之间的连接，分别体现了图论中的顶点和边。因此，我们

还可以使用指针、对象引用等来表示图结构中的顶点和边。常见的图模型，例如多叉树、无

向图和有向图等，都可以用指针或引用来实现。

在数组和链表这些基础的数据结构之上，我们可以构建更复杂的数据结构，比如哈希表、队

列和栈等等。这些数据结构，提供了逻辑更复杂的模型，可以通过数组、链表或两者的结合

来实现。

第 2 讲我提到了哈希的概念，而哈希表就可以通过数组和链表来构造。在很多编程语言

中，哈希表的实现采用的是链地址哈希表。这种方法的主要思想是，先分配一个很大的数组

空间，而数组中的每一个元素都是一个链表的头部。随后，我们就可以根据哈希函数算出的

哈希值（也叫哈希的 key），找到数组的某个元素及对应的链表，然后把数据添加到这个链

表中。

之所以要这样设计，是因为存在哈希冲突。对于不同的数据，哈希函数可能产生相同的哈希

值，这就是哈希冲突。如果数组的每个元素都只能存放一个数据，那就无法解决冲突。如果

https://time.geekbang.org/column/article/72163

每个元素对应了一个链表，那么当发生冲突的时候，我们就可以把多个数据添加到同一个链

表中。可是，把多个数据存放在一个链表，就代表访问效率不高。所以，我们要尽量找到一

个合理的哈希函数，减少冲突发生的机会，提升检索的效率。

在第 2 讲中，我还提到了使用求余相关的操作来实现哈希函数。我这里举个例子。你可以

看我画的这幅图。

我们把对 100 求余作为哈希函数。因此数组的长度是 100。对于每一个数字，通过它对

100 求余，确定它在数组中的位置。如果多个数字的求余结果一样，就产生冲突，使用链

表来解决。我们可以看到，表中位置 98 的链表没有冲突，而 0、1、2、3 和 99 位置的链

表都有冲突。

说完了哈希，我们来看看栈这种数据结构。我在介绍树的深度优先搜索时讲到栈。它是先进

后出的。在我们进行函数递归的时候，函数调用和返回的顺序，也是先进后出，所以，栈体

现了递归的思想，可以实现基于递归的编程。实际上，计算机系统里的函数递归，在内部也

是通过栈来实现的。虽然直接通过栈来实现递归不如函数递归调用那么直观，但是，由于栈

可以避免过多的中间变量，它可以节省内存空间的使用。

我在介绍广度优先搜索策略时，谈到了队列。队列和栈最大的不同在于，它是一种先进先出

的数据结构，先进入队列的元素会优先得到处理。队列模拟了日常生活中人们排队的现象，

其思想已经延伸到很多大型的数据系统中，例如消息队列。

在消息系统中，生产者会源源不断地推送新的数据，而消费者会对这些消息进行处理。可

是，有时消费者的处理速度会慢于生产者推送的速度，这会带来很多复杂的后续问题，因此

我们可以通过队列实现消息的缓冲。新产生的数据会先进入队列，直到消费者处理它。经过

这样的异步处理，消息的队列实现了生产者和消费者的松耦合，对消费者起到了保护作用，

使它不容易被数据洪流冲垮。

比哈希表，队列和栈更为复杂的数据结构是基于图论中的各种模型，例如各种二叉树、多叉

树、有向图和无向图等等。通常，这些模型表示了顶点和顶点之间的稀疏关系，所以它们常

常是基于指针或者对象引用来实现的。我在讲前缀树、社交关系图和交通地图的案例中，都

使用了这些模型。另外，树模型中的多叉树、特别是二叉树体现了递归的思想。之前的递归

编程的案例中的图示也可以对应到多叉树的表示。

编程语句

在你刚刚开始学习编程的时候，肯定接触过条件语句、循环语句和函数调用这些基本的语

句。

条件语句的一个关键元素是布尔表达式。它其实体现了逻辑代数中逻辑和集合的概念。逻辑

代数，也被称为布尔代数，主要包括了逻辑表达式及其相关的逻辑运算，可以帮助我们消除

自然语言所带来的歧义，并严格、准确地描述事物。在编程语言中，我们把逻辑表达式和控

制语言结合起来，比如 Java 语言的 If 语句：

当然，逻辑代数在计算机中的应用，远不止条件语句。例如 SQL 语言中的 Select 语句和布

尔检索模型。Select 是 SQL 查询语言中十分常用的语句。这个语句将根据指定的逻辑表达

式，在一个数据库中进行查询并返回结果，而返回的结果就是满足条件的记录之集合。类似

地，布尔检索模型利用逻辑表达式，确定哪些文档满足检索的条件并把它们作为结果返回。

1 if(表达式) {函数体 1} else {函数体 2}：若表达式为真，执行函数体 1，否则执行函数体 2。

复制代码

这里顺便提一下，除了条件语句中的布尔表达式，逻辑代数还体现在编程中的其他地方。例

如，SQL 语言中的 Join 操作。Join 有多种类型，每种类型其实都对应了一种集合的操作。

循环语句可以让我们进行有规律性的重复性操作，直到满足某个条件。这和迭代法中反复修

改某个值的操作非常一致。所以循环常用于迭代法的实现，例如二分或者牛顿法求解方程的

根。在之前的迭代法讲解中，我经常使用循环来实现编码。另外，循环语句也会经常和布尔

表达式相结合。嵌套的多层循环，常常用于比较多个元素的大小，或者计算多个元素之间的

相似度等等，这也体现了排列组合的思想。

至于函数的调用，一个函数既可以调用自己，也可以调用其他不同的函数。如果不断地调用

自己，这就体现了递归的思想。同时，函数的递归调用也可以体现排列组合的思想。

基础算法

在前面的专栏中，我介绍了一些常见算法及其对应的数学思想。而这些思想，在算法中的体

现无处不在。

介绍分治思想的时候，我谈及了 MapReduce 的数据切分。在分布式系统中，除了数据切

分，我们还要经常处理的问题是：如何确定服务请求被分配到哪台机器上？这就引出了负载

均衡算法。

常见的包括轮询或者源地址哈希算法。轮询算法把请求按顺序轮流地分配到后端服务器上，

它并不关心每台服务器当前的负载。如果我们对每个请求标上一个自动增加的 ID，我们可

以认为轮询算法是对请求的 ID 进行求余操作（或者是求余的哈希函数），被除数就是可用

服务器的数量，余数就是接受请求的服务器 ID。而源地址哈希进一步扩展了这个思想，扩

展主要体现在：

内连接（inner join）：假设被连接的两张数据表分别是左表和右表，那么内连接查询能

将左表和右表中能关联起来的数据连接后返回，返回的结果就是两个表中所有相匹配的数

据。如果认为左表是集合 A，右表是集合 B，那么从集合的角度来说，内连接产生的结果

是 A、B 两个集合的交集。

外连接（outer join）：外连接可以保留左表，右表或全部表。根据这些行为的不同，可

分为左外连接、右外连接和全连接。无论哪一种，都是对应于不同的集合操作。

它可以对请求的 IP 或其他唯一标识进行哈希，而不一定是请求的 ID；

不管是对何种数据进行哈希变换，也不管是何种哈希函数，只要能为每个请求确定哈希 key

之后，我们就能为它查找对应的服务器。

另外，在第 9 节中，我谈到了字符串的编辑距离，但是没有涉及字符串匹配的算法。知名

的 RK（Rabin-Karp）匹配算法，在暴力匹配（Brute Force）基础之上，充分利用了迭代

法和哈希，提升了算法的效率。

首先，RK 算法可以根据两个字符串哈希后的值。来判断它们是不是相同。如果哈希值不

同，则两个字符串肯定不同，不用再比较；此外，RK 算法中的哈希设计非常巧妙，让相邻

两个子字符串的哈希值产生了固定的联系，让我们可以通过前一个子串的哈希值，推导出后

一个子串的哈希值，这样就能使用迭代法来计算每个子串的哈希值，大大减少了用于哈希函

数的计算。

除了分治和动态规划，另一个常用的算法思想是回溯。我们可以使用回溯来解决的问题包括

八皇后和 0/1 背包等等。回溯实际上体现了递归和排列的思想。不过，它对搜索空间做了

一些优化，提前排除了不可能的情况，提升了算法整体的效率。当然，既然回溯体现了递归

的思想，也可以把整个搜索状态表示成树，而对结果的搜索就是树的深度优先遍历。

在前两节讲述算法复杂度分析的时候，我已经从数学的角度出发，总结了几个常用的法则，

包括四则运算、主次分明、齐头并进、排列组合、一图千言和时空互换。这些法则体现了数

学中的运算优先级、数量级、多元变量、图论等思想。这些我们上两节刚刚讲过，我就不多

说了，你可以参考之前的内容快速复习一下。

小结

这一讲，我对常用的数据结构、编程语句和算法中所体现的数学思想，做了一个大体的梳

理。可以看到，不同的数据结构，都是在编程中运用数学思维的产物。每种数据结构都有自

身的特点，有利于我们更方便地实现某种特定的数学模型。

从数据结构的角度来看，最基本的数组遍历体现了迭代的思想，而链表和树的结构可用于刻

画图论中的模型。栈的先进后出、以及队列的先进先出，分别适用于图的深度优先和广度优

先遍历。哈希表则充分利用了哈希函数的特点，大幅降低了查询的时间复杂度。

哈希函数的变换操作不一定是求余。

https://time.geekbang.org/column/article/75807

当然，仅仅使用数据结构来存储数据还不够，我们还需要操作这些数据。为了实现操作的流

程，条件语句使用了布尔代数来控制编程逻辑，循环和函数嵌套使用迭代、递归和排列组合

等思想来实现更精细的数学模型。

但是，有时候我们面对的问题太复杂了，除了数据结构和基本的编程语句，我们还需要发明

一些算法。为了提升算法的效率，我们需要对其进行复杂度分析。通常，这些算法中的数学

思想就更为明显，因为它们都是为了解决特定的问题，根据特定的数学模型而设计的。

有的时候，某个算法会体现多种数学思想，例如 RK 字符串匹配算法，同时使用了迭代法和

哈希。此外，多种数学思维可能都是相通的。比如，递归的思想、排列的结果、二进制数的

枚举都可以用树的结构来图示化，因此我们可以通过树来理解。

所以，在平时学习编程的时候，你可以多从数学的角度出发，思考其背后的数学模型。这样

不仅有利于你对现有知识的融会贯通，还可以帮助你优化数据结构和算法。

思考题

在你日常的工作项目中，应该经常用到数据结构和算法，能不能列举一下，其中有哪些数学

思想呢？

欢迎在留言区交作业，并写下你今天的学习笔记。你可以点击“请朋友读”，把今天的内容

分享给你的好友，和他一起精进。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 17 | 时间和空间复杂度（下）：如何使用六个法则进行复杂度分析？

下一篇 数学专栏课外加餐（三）：程序员需要读哪些数学书？

hua168
2019-01-23

 6

老师，问3个很重要的题外问题：
1. 大专学历，想直接自学考本科或研究生，自考学历中大型公司承认的吗？
2. 大公司对年龄有限制的吗？
3. 30多岁，运维，只有小公司工作经验，技术一般，发展方向是什么？
 很多IT公司好像都不要年龄大点的~~人生80，那不是40岁就没得工作了？

展开

作者回复: 我一个个来回答

第一个，我个人对这方面不太清楚，不过我觉得关键看结果，如果你能考上大学，拿到合格的文

凭，应该就没问题。具体你可以咨询一下大公司的人事。

第二个，一般情况下没有特殊要求，关键看你牛不牛。

精选留言 (8)  写留言

第三个，这个很难给出一个具体的答案，要看你个人的兴趣和特长，如果能找到一个结合点就最

好了。

至于年龄问题，我觉得如果一个公司只看年龄，那就太片面了。从另一个方面来考虑，我们自己

也要不断地充电，才不会被时代所淘汰。

草原上的奔...
2019-01-25

 3

本篇黄申老师讲了数学的思想在编程里的具体实践落地，讲的太好了。数据结构，编程语
句，基础算法，这些都有数学的思想在里面。之前自己没有去联想它们，造成的结果就是
数学的思想悬在空中，写代码是写代码，数学思想是数学思想，两者不沾边，偶尔两者会
碰撞一下，就会觉的很开心。黄申老师在这里给我指明了方向，让数学思想实际内化到编
程之中，编程背后的逻辑支撑，提供给了我们为什么这么做的理由。想起来一句话，知…
展开

作者回复: 很高兴我的专栏能给你带来帮助！在后面的几大模块中，我会继续发挥这种风格

Boxing
2019-03-19

 1

老师阶段性总结的非常棒。希望老师在后面课程讲得更接地气，通俗易懂，谢谢！

作者回复: 我会继续加油💪

Jerry银银
2019-01-23

 1

很喜欢今天的文章。把编程中的细节和数学关联，让人茅塞顿开

栾~龟虽寿...
2019-05-05



真的感谢老师，我感觉钱花的太值了。

展开

作者回复: 很高兴这门课程对你有帮助！

木刻
2019-03-24



老师的造诣让人望尘莫及啊，我这辈子是不行了😂

展开

作者回复: 多多实践和总结，你也会有自己的独到的见解和心得 ☺

苦行僧
2019-02-28



数组 堆栈 队列 链表 二叉查找树 平常基本用这些

展开

alic
2019-01-23



干货

展开

