
06 | 链表（上）：如何实现LRU缓存淘汰算法?
2018-10-03 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 17:06 大小 7.85M

今天我们来聊聊“链表（Linked list）”这个数据结构。学习链表有什么用呢？为了回答这

个问题，我们先来讨论一个经典的链表应用场景，那就是 LRU 缓存淘汰算法。

缓存是一种提高数据读取性能的技术，在硬件设计、软件开发中都有着非常广泛的应用，比

如常见的 CPU 缓存、数据库缓存、浏览器缓存等等。

缓存的大小有限，当缓存被用满时，哪些数据应该被清理出去，哪些数据应该被保留？这就

需要缓存淘汰策略来决定。常见的策略有三种：先进先出策略 FIFO（First In，First

Out）、最少使用策略 LFU（Least Frequently Used）、最近最少使用策略 LRU（Least

Recently Used）。





 下载APP 

这些策略你不用死记，我打个比方你很容易就明白了。假如说，你买了很多本技术书，但有

一天你发现，这些书太多了，太占书房空间了，你要做个大扫除，扔掉一些书籍。那这个时

候，你会选择扔掉哪些书呢？对应一下，你的选择标准是不是和上面的三种策略神似呢？

好了，回到正题，我们今天的开篇问题就是：如何用链表来实现 LRU 缓存淘汰策略呢？ 带

着这个问题，我们开始今天的内容吧！

五花八门的链表结构

相比数组，链表是一种稍微复杂一点的数据结构。对于初学者来说，掌握起来也要比数组稍

难一些。这两个非常基础、非常常用的数据结构，我们常常将会放到一块儿来比较。所以我

们先来看，这两者有什么区别。

我们先从底层的存储结构上来看一看。

为了直观地对比，我画了一张图。从图中我们看到，数组需要一块连续的内存空间来存储，

对内存的要求比较高。如果我们申请一个 100MB 大小的数组，当内存中没有连续的、足够

大的存储空间时，即便内存的剩余总可用空间大于 100MB，仍然会申请失败。

而链表恰恰相反，它并不需要一块连续的内存空间，它通过“指针”将一组零散的内存块串

联起来使用，所以如果我们申请的是 100MB 大小的链表，根本不会有问题。

链表结构五花八门，今天我重点给你介绍三种最常见的链表结构，它们分别是：单链表、双

向链表和循环链表。我们首先来看最简单、最常用的单链表。

我们刚刚讲到，链表通过指针将一组零散的内存块串联在一起。其中，我们把内存块称为链

表的“结点”。为了将所有的结点串起来，每个链表的结点除了存储数据之外，还需要记录

链上的下一个结点的地址。如图所示，我们把这个记录下个结点地址的指针叫作后继指针

next。

从我画的单链表图中，你应该可以发现，其中有两个结点是比较特殊的，它们分别是第一个

结点和最后一个结点。我们习惯性地把第一个结点叫作头结点，把最后一个结点叫作尾结

点。其中，头结点用来记录链表的基地址。有了它，我们就可以遍历得到整条链表。而尾结

点特殊的地方是：指针不是指向下一个结点，而是指向一个空地址 NULL，表示这是链表

上最后一个结点。

与数组一样，链表也支持数据的查找、插入和删除操作。

我们知道，在进行数组的插入、删除操作时，为了保持内存数据的连续性，需要做大量的数

据搬移，所以时间复杂度是 O(n)。而在链表中插入或者删除一个数据，我们并不需要为了

保持内存的连续性而搬移结点，因为链表的存储空间本身就不是连续的。所以，在链表中插

入和删除一个数据是非常快速的。

为了方便你理解，我画了一张图，从图中我们可以看出，针对链表的插入和删除操作，我们

只需要考虑相邻结点的指针改变，所以对应的时间复杂度是 O(1)。

但是，有利就有弊。链表要想随机访问第 k 个元素，就没有数组那么高效了。因为链表中

的数据并非连续存储的，所以无法像数组那样，根据首地址和下标，通过寻址公式就能直接

计算出对应的内存地址，而是需要根据指针一个结点一个结点地依次遍历，直到找到相应的

结点。

你可以把链表想象成一个队伍，队伍中的每个人都只知道自己后面的人是谁，所以当我们希

望知道排在第 k 位的人是谁的时候，我们就需要从第一个人开始，一个一个地往下数。所

以，链表随机访问的性能没有数组好，需要 O(n) 的时间复杂度。

好了，单链表我们就简单介绍完了，接着来看另外两个复杂的升级版，循环链表和双向链

表。

循环链表是一种特殊的单链表。实际上，循环链表也很简单。它跟单链表唯一的区别就在尾

结点。我们知道，单链表的尾结点指针指向空地址，表示这就是最后的结点了。而循环链表

的尾结点指针是指向链表的头结点。从我画的循环链表图中，你应该可以看出来，它像一个

环一样首尾相连，所以叫作“循环”链表。

和单链表相比，循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特

点时，就特别适合采用循环链表。比如著名的约瑟夫问题。尽管用单链表也可以实现，但是

用循环链表实现的话，代码就会简洁很多。

单链表和循环链表是不是都不难？接下来我们再来看一个稍微复杂的，在实际的软件开发

中，也更加常用的链表结构：双向链表。

单向链表只有一个方向，结点只有一个后继指针 next 指向后面的结点。而双向链表，顾名

思义，它支持两个方向，每个结点不止有一个后继指针 next 指向后面的结点，还有一个前

驱指针 prev 指向前面的结点。

https://zh.wikipedia.org/wiki/%E7%BA%A6%E7%91%9F%E5%A4%AB%E6%96%AF%E9%97%AE%E9%A2%98

从我画的图中可以看出来，双向链表需要额外的两个空间来存储后继结点和前驱结点的地

址。所以，如果存储同样多的数据，双向链表要比单链表占用更多的内存空间。虽然两个指

针比较浪费存储空间，但可以支持双向遍历，这样也带来了双向链表操作的灵活性。那相比

单链表，双向链表适合解决哪种问题呢？

从结构上来看，双向链表可以支持 O(1) 时间复杂度的情况下找到前驱结点，正是这样的特

点，也使双向链表在某些情况下的插入、删除等操作都要比单链表简单、高效。

你可能会说，我刚讲到单链表的插入、删除操作的时间复杂度已经是 O(1) 了，双向链表还

能再怎么高效呢？别着急，刚刚的分析比较偏理论，很多数据结构和算法书籍中都会这么

讲，但是这种说法实际上是不准确的，或者说是有先决条件的。我再来带你分析一下链表的

两个操作。

我们先来看删除操作。

在实际的软件开发中，从链表中删除一个数据无外乎这两种情况：

对于第一种情况，不管是单链表还是双向链表，为了查找到值等于给定值的结点，都需要从

头结点开始一个一个依次遍历对比，直到找到值等于给定值的结点，然后再通过我前面讲的

指针操作将其删除。

尽管单纯的删除操作时间复杂度是 O(1)，但遍历查找的时间是主要的耗时点，对应的时间

复杂度为 O(n)。根据时间复杂度分析中的加法法则，删除值等于给定值的结点对应的链表

删除结点中“值等于某个给定值”的结点；

删除给定指针指向的结点。

操作的总时间复杂度为 O(n)。

对于第二种情况，我们已经找到了要删除的结点，但是删除某个结点 q 需要知道其前驱结

点，而单链表并不支持直接获取前驱结点，所以，为了找到前驱结点，我们还是要从头结点

开始遍历链表，直到 p->next=q，说明 p 是 q 的前驱结点。

但是对于双向链表来说，这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱

结点的指针，不需要像单链表那样遍历。所以，针对第二种情况，单链表删除操作需要

O(n) 的时间复杂度，而双向链表只需要在 O(1) 的时间复杂度内就搞定了！

同理，如果我们希望在链表的某个指定结点前面插入一个结点，双向链表比单链表有很大的

优势。双向链表可以在 O(1) 时间复杂度搞定，而单向链表需要 O(n) 的时间复杂度。你可

以参照我刚刚讲过的删除操作自己分析一下。

除了插入、删除操作有优势之外，对于一个有序链表，双向链表的按值查询的效率也要比单

链表高一些。因为，我们可以记录上次查找的位置 p，每次查询时，根据要查找的值与 p

的大小关系，决定是往前还是往后查找，所以平均只需要查找一半的数据。

现在，你有没有觉得双向链表要比单链表更加高效呢？这就是为什么在实际的软件开发中，

双向链表尽管比较费内存，但还是比单链表的应用更加广泛的原因。如果你熟悉 Java 语

言，你肯定用过 LinkedHashMap 这个容器。如果你深入研究 LinkedHashMap 的实现原

理，就会发现其中就用到了双向链表这种数据结构。

实际上，这里有一个更加重要的知识点需要你掌握，那就是用空间换时间的设计思想。当内

存空间充足的时候，如果我们更加追求代码的执行速度，我们就可以选择空间复杂度相对较

高、但时间复杂度相对很低的算法或者数据结构。相反，如果内存比较紧缺，比如代码跑在

手机或者单片机上，这个时候，就要反过来用时间换空间的设计思路。

还是开篇缓存的例子。缓存实际上就是利用了空间换时间的设计思想。如果我们把数据存储

在硬盘上，会比较节省内存，但每次查找数据都要询问一次硬盘，会比较慢。但如果我们通

过缓存技术，事先将数据加载在内存中，虽然会比较耗费内存空间，但是每次数据查询的速

度就大大提高了。

所以我总结一下，对于执行较慢的程序，可以通过消耗更多的内存（空间换时间）来进行优

化；而消耗过多内存的程序，可以通过消耗更多的时间（时间换空间）来降低内存的消耗。

你还能想到其他时间换空间或者空间换时间的例子吗？

了解了循环链表和双向链表，如果把这两种链表整合在一起就是一个新的版本：双向循环链

表。我想不用我多讲，你应该知道双向循环链表长什么样子了吧？你可以自己试着在纸上画

一画。

链表 VS 数组性能大比拼

通过前面内容的学习，你应该已经知道，数组和链表是两种截然不同的内存组织方式。正是

因为内存存储的区别，它们插入、删除、随机访问操作的时间复杂度正好相反。

不过，数组和链表的对比，并不能局限于时间复杂度。而且，在实际的软件开发中，不能仅

仅利用复杂度分析就决定使用哪个数据结构来存储数据。

数组简单易用，在实现上使用的是连续的内存空间，可以借助 CPU 的缓存机制，预读数组

中的数据，所以访问效率更高。而链表在内存中并不是连续存储，所以对 CPU 缓存不友

好，没办法有效预读。

数组的缺点是大小固定，一经声明就要占用整块连续内存空间。如果声明的数组过大，系统

可能没有足够的连续内存空间分配给它，导致“内存不足（out of memory）”。如果声

明的数组过小，则可能出现不够用的情况。这时只能再申请一个更大的内存空间，把原数组

拷贝进去，非常费时。链表本身没有大小的限制，天然地支持动态扩容，我觉得这也是它与

数组最大的区别。

你可能会说，我们 Java 中的 ArrayList 容器，也可以支持动态扩容啊？我们上一节课讲

过，当我们往支持动态扩容的数组中插入一个数据时，如果数组中没有空闲空间了，就会申

请一个更大的空间，将数据拷贝过去，而数据拷贝的操作是非常耗时的。

我举一个稍微极端的例子。如果我们用 ArrayList 存储了了 1GB 大小的数据，这个时候已

经没有空闲空间了，当我们再插入数据的时候，ArrayList 会申请一个 1.5GB 大小的存储空

间，并且把原来那 1GB 的数据拷贝到新申请的空间上。听起来是不是就很耗时？

除此之外，如果你的代码对内存的使用非常苛刻，那数组就更适合你。因为链表中的每个结

点都需要消耗额外的存储空间去存储一份指向下一个结点的指针，所以内存消耗会翻倍。而

且，对链表进行频繁的插入、删除操作，还会导致频繁的内存申请和释放，容易造成内存碎

片，如果是 Java 语言，就有可能会导致频繁的 GC（Garbage Collection，垃圾回收）。

所以，在我们实际的开发中，针对不同类型的项目，要根据具体情况，权衡究竟是选择数组

还是链表。

解答开篇

好了，关于链表的知识我们就讲完了。我们现在回过头来看下开篇留给你的思考题。如何基

于链表实现 LRU 缓存淘汰算法？

我的思路是这样的：我们维护一个有序单链表，越靠近链表尾部的结点是越早之前访问的。

当有一个新的数据被访问时，我们从链表头开始顺序遍历链表。

1. 如果此数据之前已经被缓存在链表中了，我们遍历得到这个数据对应的结点，并将其从

原来的位置删除，然后再插入到链表的头部。

2. 如果此数据没有在缓存链表中，又可以分为两种情况：

这样我们就用链表实现了一个 LRU 缓存，是不是很简单？

现在我们来看下 m 缓存访问的时间复杂度是多少。因为不管缓存有没有满，我们都需要遍

历一遍链表，所以这种基于链表的实现思路，缓存访问的时间复杂度为 O(n)。

实际上，我们可以继续优化这个实现思路，比如引入散列表（Hash table）来记录每个数

据的位置，将缓存访问的时间复杂度降到 O(1)。因为要涉及我们还没有讲到的数据结构，

所以这个优化方案，我现在就不详细说了，等讲到散列表的时候，我会再拿出来讲。

除了基于链表的实现思路，实际上还可以用数组来实现 LRU 缓存淘汰策略。如何利用数组

实现 LRU 缓存淘汰策略呢？我把这个问题留给你思考。

内容小结

今天我们讲了一种跟数组“相反”的数据结构，链表。它跟数组一样，也是非常基础、非常

常用的数据结构。不过链表要比数组稍微复杂，从普通的单链表衍生出来好几种链表结构，

比如双向链表、循环链表、双向循环链表。

和数组相比，链表更适合插入、删除操作频繁的场景，查询的时间复杂度较高。不过，在具

体软件开发中，要对数组和链表的各种性能进行对比，综合来选择使用两者中的哪一个。

课后思考

如何判断一个字符串是否是回文字符串的问题，我想你应该听过，我们今天的题目就是基于

这个问题的改造版本。如果字符串是通过单链表来存储的，那该如何来判断是一个回文串

呢？你有什么好的解决思路呢？相应的时间空间复杂度又是多少呢？

欢迎留言和我分享，我会第一时间给你反馈。

我已将本节内容相关的详细代码更新到 GitHub，戳此即可查看。

如果此时缓存未满，则将此结点直接插入到链表的头部；

如果此时缓存已满，则链表尾结点删除，将新的数据结点插入链表的头部。

https://github.com/wangzheng0822/algo

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 05 | 数组：为什么很多编程语言中数组都从0开始编号？

下一篇 07 | 链表（下）：如何轻松写出正确的链表代码？

Rain 置顶

2018-10-04
 406

Re Ydyhm:

“数组简单易用，在实现上使用的是连续的内存空间，可以借助 CPU 的缓存机制，预读数
组中的数据，所以访问效率更高。而链表在内存中并不是连续存储，所以对 CPU 缓存不友
好，没办法有效预读。” 这里的CPU缓存机制指的是什么？为什么就数组更好了？ …
展开

作者回复: 同学，太爱你了。写的太好了！就喜欢你这样的，减轻了我很多回复留言的工作量。👍

精选留言 (355)  写留言

JK David 置顶

2018-10-03
 117

思考题：

使用快慢两个指针找到链表中点，慢指针每次前进一步，快指针每次前进两步。在慢指针
前进的过程中，同时修改其 next 指针，使得链表前半部分反序。最后比较中点两侧的链表
是否相等。 …
展开

作者回复: 思路正确，不过空间复杂度计算的不对，应该是O(1)，不是O(n)。我们要看额外的内存

消耗，不是看链表本身存储需要多少空间。

Liam 置顶

2018-10-03
 52

1 快慢指针定位中间节点
2 从中间节点对后半部分逆序
3 前后半部分比较，判断是否为回文
4 后半部分逆序复原
 …
展开

作者回复: 回答的很好！👍

glbfor.gt... 置顶

2018-10-11
 25

1 快慢指针定位中间节点（这里要区分奇偶情况）
1.1 奇数情况，中点位置不需要矫正
1.2 偶数情况，使用偶数定位中点策略，要确定是返回上中位数或下中位数
1.2.1 如果是返回上中位数，后半部分串头取next
1.2.2 如果是返回下中位数，后半部分串头既是当前节点位置，但前半部分串尾要删除掉…
展开

作者回复: 👍 回答的非常好

sky 置顶

2018-10-09
 11

用快慢指针先找到中点，然后把后半段链表reversed，然后一个指针在头部，一个指针再
中点，开始逐个比较，时间复杂度是O（n)

展开

作者回复: 对的！👍

姜威
2018-10-03

 166

五、应用
1.如何分别用链表和数组实现LRU缓冲淘汰策略？
1）什么是缓存？
缓存是一种提高数据读取性能的技术，在硬件设计、软件开发中都有着非广泛的应用，比
如常见的CPU缓存、数据库缓存、浏览器缓存等等。 …
展开

作者回复: 👍

molybdenu...
2018-10-07

 122

看了大家的评论学习到了快慢指针法，看语言描述没太懂，自己用代码写了下才明白。
大致思路如下
由于回文串最重要的就是对称，那么最重要的问题就是找到那个中心，用快指针每步两格
走，当他到达链表末端的时候，慢指针刚好到达中心，慢指针在过来的这趟路上还做了一
件事，他把走过的节点反向了，在中心点再开辟一个新的指针用于往回走，而慢指针继…
展开

姜威
2018-10-03

 48

总结
一、什么是链表？
1.和数组一样，链表也是一种线性表。
2.从内存结构来看，链表的内存结构是不连续的内存空间，是将一组零散的内存块串联起

来，从而进行数据存储的数据结构。 …
展开

作者回复: 👍

_stuView
2018-10-03

 40

双向链表存储，两个指针分别从头节点和尾节点开始遍历，依次比较节点value，判断是否
为回文序列

Joshua 兆...
2018-10-03

 32

习题解答
1.快进慢进法[两组指针，从头开始，a组一次进一，b组一次进二，b组到终点时，a组位置
即为链表中间结点，循环次数为链表除去中间结点后前后两组的长度] 求得单向链表“中
间”节点。并计算遍历次数，经过验证，遍历次数为‘’半链表‘’长度
2.从中间结点开始，以动态步长[每第i次步长是半链表长度-i+1]遍历链表，同时，从头节…
展开

雨山
2018-10-03

 29

果然有程序员风格，放假还更新，昨天临睡前就看完了，但是没有评价，总之这个课绝对
物有所值。

无崖子🍀
2018-10-05

 23

用数组解决Lru缓存问题：
维护一个有序的数组，越靠近数组首位置的数据越是最早访问的。
1.如果这个数据已经存在于数组中，把对应位置的数据删掉，直接把这个数据加到数组的
最后一位。时间复杂度为o(n)
2.如果数据不存在这个数组中，数据还有空间的话，就把数据直接插到最后一位。没有的…
展开

徐凯
2018-10-03  20

通过一个栈 遍历整个链表 然后再从栈中弹出 如果元素都匹配则为回文

落叶飞逝的...
2018-10-03

 19

老师，关于解答开篇那边，能不能附加一些代码示例，这样配合代码跟思路讲解，可能更
好的理解呢。

JStFs
2018-10-04

 15

LRU：活在当下。比如在公司中，一个新员工做出新业绩，马上会得到重用。

LFU：以史为镜。还是比如在公司中，新员工必须做出比那些功勋卓著的老员工更多更好的
业绩才可以受到老板重视，这样的方式比较尊重“前辈”。

展开

作者回复: 哈哈 形象！

null
2018-10-07

 10

老师，您回复 JK David 说到：
空间复杂度计算的不对，应该是O(1)，不是O(n)。我们要看额外的内存消耗，不是看链表
本身存储需要多少空间。

 …
展开

六六六
2018-10-03

 8

判断单链表是否是回文，只想到了这种low一些的做法，时间复杂度为O(n^2)：
public static boolean isHuiwen(LinkedList linkedList) {
 Node first = linkedList.getFirst();
 int size = linkedList.getSize();
 Node head = null; …

展开

Kevin.zh...
2018-11-09

 7

习题解，大部分同学都说到了方法一：半栈法
　　　　　１．用快慢两个指针遍历，同时用栈copy慢指针指向的data。
　　　　　２．完成后，慢指针指向中间节点，耗时为N/2.
　　　　　３．最后用pop栈中的data和慢指针指向的data比较，耗时也是N/2.
 所以时间复杂度为：Ｏ(N)，空间复杂度因栈额外存储了一半的data，故为O(N/2) …
展开

5ispy
2018-10-10

 6

老师好，关于这节的内容有个疑问不太确定。
因为我看有人用java实现了链表有人也可以用c来实现。是不是数组属于编程语言“自
带”的，而链表是 人 用编程语言 “实现”的。
比如对于java来说，如果项目中用到了链表，我们可以说是用到了某个类，而这个类就是
链表（实现了链表的功能）。 …
展开

作者回复: 你理解的没错

阳仔
2018-10-03

 6

学习反馈：
链表也是一种基础的线性表结构。由于它的很多特点跟数组是相反的，因此可以与数组一
起对比着学习。
数组的存储空间是连续，而链表不是；数组可以通过寻址公式计算通过下标来访问，而链
表访问元素需要遍历。 …
展开

作者回复: 👍

