
15 | 二分查找（上）：如何用最省内存的方式实现快速查找功能？
2018-10-24 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 14:56 大小 6.85M

今天我们讲一种针对有序数据集合的查找算法：二分查找（Binary Search）算法，也叫折

半查找算法。二分查找的思想非常简单，很多非计算机专业的同学很容易就能理解，但是看

似越简单的东西往往越难掌握好，想要灵活应用就更加困难。

老规矩，我们还是来看一道思考题。

假设我们有 1000 万个整数数据，每个数据占 8 个字节，如何设计数据结构和算法，快速

判断某个整数是否出现在这 1000 万数据中？ 我们希望这个功能不要占用太多的内存空

间，最多不要超过 100MB，你会怎么做呢？带着这个问题，让我们进入今天的内容吧！

无处不在的二分思想





 下载APP 

二分查找是一种非常简单易懂的快速查找算法，生活中到处可见。比如说，我们现在来做一

个猜字游戏。我随机写一个 0 到 99 之间的数字，然后你来猜我写的是什么。猜的过程中，

你每猜一次，我就会告诉你猜的大了还是小了，直到猜中为止。你来想想，如何快速猜中我

写的数字呢？

假设我写的数字是 23，你可以按照下面的步骤来试一试。（如果猜测范围的数字有偶数

个，中间数有两个，就选择较小的那个。）

7 次就猜出来了，是不是很快？这个例子用的就是二分思想，按照这个思想，即便我让你猜

的是 0 到 999 的数字，最多也只要 10 次就能猜中。不信的话，你可以试一试。

这是一个生活中的例子，我们现在回到实际的开发场景中。假设有 1000 条订单数据，已经

按照订单金额从小到大排序，每个订单金额都不同，并且最小单位是元。我们现在想知道是

否存在金额等于 19 元的订单。如果存在，则返回订单数据，如果不存在则返回 null。

最简单的办法当然是从第一个订单开始，一个一个遍历这 1000 个订单，直到找到金额等于

19 元的订单为止。但这样查找会比较慢，最坏情况下，可能要遍历完这 1000 条记录才能

找到。那用二分查找能不能更快速地解决呢？

为了方便讲解，我们假设只有 10 个订单，订单金额分别是：8，11，19，23，27，33，

45，55，67，98。

还是利用二分思想，每次都与区间的中间数据比对大小，缩小查找区间的范围。为了更加直

观，我画了一张查找过程的图。其中，low 和 high 表示待查找区间的下标，mid 表示待查

找区间的中间元素下标。

看懂这两个例子，你现在对二分的思想应该掌握得妥妥的了。我这里稍微总结升华一下，二

分查找针对的是一个有序的数据集合，查找思想有点类似分治思想。每次都通过跟区间的中

间元素对比，将待查找的区间缩小为之前的一半，直到找到要查找的元素，或者区间被缩小

为 0。

O(logn) 惊人的查找速度

二分查找是一种非常高效的查找算法，高效到什么程度呢？我们来分析一下它的时间复杂

度。

我们假设数据大小是 n，每次查找后数据都会缩小为原来的一半，也就是会除以 2。最坏情

况下，直到查找区间被缩小为空，才停止。

可以看出来，这是一个等比数列。其中 n/2 =1 时，k 的值就是总共缩小的次数。而每一次

缩小操作只涉及两个数据的大小比较，所以，经过了 k 次区间缩小操作，时间复杂度就是

O(k)。通过 n/2 =1，我们可以求得 k=log n，所以时间复杂度就是 O(logn)。

二分查找是我们目前为止遇到的第一个时间复杂度为 O(logn) 的算法。后面章节我们还会

讲堆、二叉树的操作等等，它们的时间复杂度也是 O(logn)。我这里就再深入地讲讲

O(logn) 这种对数时间复杂度。这是一种极其高效的时间复杂度，有的时候甚至比时间复杂

度是常量级 O(1) 的算法还要高效。为什么这么说呢？

因为 logn 是一个非常“恐怖”的数量级，即便 n 非常非常大，对应的 logn 也很小。比如

n 等于 2 的 32 次方，这个数很大了吧？大约是 42 亿。也就是说，如果我们在 42 亿个数

据中用二分查找一个数据，最多需要比较 32 次。

我们前面讲过，用大 O 标记法表示时间复杂度的时候，会省略掉常数、系数和低阶。对于

常量级时间复杂度的算法来说，O(1) 有可能表示的是一个非常大的常量值，比如

O(1000)、O(10000)。所以，常量级时间复杂度的算法有时候可能还没有 O(logn) 的算法

执行效率高。

反过来，对数对应的就是指数。有一个非常著名的“阿基米德与国王下棋的故事”，你可以

自行搜索一下，感受一下指数的“恐怖”。这也是为什么我们说，指数时间复杂度的算法在

大规模数据面前是无效的。

二分查找的递归与非递归实现

k

k
2

实际上，简单的二分查找并不难写，注意我这里的“简单”二字。下一节，我们会讲到二分

查找的变体问题，那才是真正烧脑的。今天，我们来看如何来写最简单的二分查找。

最简单的情况就是有序数组中不存在重复元素，我们在其中用二分查找值等于给定值的数

据。我用 Java 代码实现了一个最简单的二分查找算法。

这个代码我稍微解释一下，low、high、mid 都是指数组下标，其中 low 和 high 表示当前

查找的区间范围，初始 low=0， high=n-1。mid 表示 [low, high] 的中间位置。我们通过

对比 a[mid] 与 value 的大小，来更新接下来要查找的区间范围，直到找到或者区间缩小为

0，就退出。如果你有一些编程基础，看懂这些应该不成问题。现在，我就着重强调一下容

易出错的 3 个地方。

1. 循环退出条件

注意是 low<=high，而不是 low<high。

2.mid 的取值

实际上，mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话，

两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public int bsearch(int[] a, int n, int value) {
 int low = 0;
 int high = n - 1;

 while (low <= high) {
 int mid = (low + high) / 2;
 if (a[mid] == value) {
 return mid;
 } else if (a[mid] < value) {
 low = mid + 1;
 } else {
 high = mid - 1;
 }
 }

 return -1;
}

复制代码

进一步，如果要将性能优化到极致的话，我们可以将这里的除以 2 操作转化成位运算 low+

((high-low)>>1)。因为相比除法运算来说，计算机处理位运算要快得多。

3.low 和 high 的更新

low=mid+1，high=mid-1。注意这里的 +1 和 -1，如果直接写成 low=mid 或者

high=mid，就可能会发生死循环。比如，当 high=3，low=3 时，如果 a[3] 不等于

value，就会导致一直循环不退出。

如果你留意我刚讲的这三点，我想一个简单的二分查找你已经可以实现了。实际上，二分查

找除了用循环来实现，还可以用递归来实现，过程也非常简单。

我用 Java 语言实现了一下这个过程，正好你可以借此机会回顾一下写递归代码的技巧。

二分查找应用场景的局限性

前面我们分析过，二分查找的时间复杂度是 O(logn)，查找数据的效率非常高。不过，并不

是什么情况下都可以用二分查找，它的应用场景是有很大局限性的。那什么情况下适合用二

分查找，什么情况下不适合呢？

首先，二分查找依赖的是顺序表结构，简单点说就是数组。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// 二分查找的递归实现

public int bsearch(int[] a, int n, int val) {
 return bsearchInternally(a, 0, n - 1, val);
}

private int bsearchInternally(int[] a, int low, int high, int value) {
 if (low > high) return -1;

 int mid = low + ((high - low) >> 1);
 if (a[mid] == value) {
 return mid;
 } else if (a[mid] < value) {
 return bsearchInternally(a, mid+1, high, value);
 } else {
 return bsearchInternally(a, low, mid-1, value);
 }
}

复制代码

那二分查找能否依赖其他数据结构呢？比如链表。答案是不可以的，主要原因是二分查找算

法需要按照下标随机访问元素。我们在数组和链表那两节讲过，数组按照下标随机访问数据

的时间复杂度是 O(1)，而链表随机访问的时间复杂度是 O(n)。所以，如果数据使用链表存

储，二分查找的时间复杂就会变得很高。

二分查找只能用在数据是通过顺序表来存储的数据结构上。如果你的数据是通过其他数据结

构存储的，则无法应用二分查找。

其次，二分查找针对的是有序数据。

二分查找对这一点的要求比较苛刻，数据必须是有序的。如果数据没有序，我们需要先排

序。前面章节里我们讲到，排序的时间复杂度最低是 O(nlogn)。所以，如果我们针对的是

一组静态的数据，没有频繁地插入、删除，我们可以进行一次排序，多次二分查找。这样排

序的成本可被均摊，二分查找的边际成本就会比较低。

但是，如果我们的数据集合有频繁的插入和删除操作，要想用二分查找，要么每次插入、删

除操作之后保证数据仍然有序，要么在每次二分查找之前都先进行排序。针对这种动态数据

集合，无论哪种方法，维护有序的成本都是很高的。

所以，二分查找只能用在插入、删除操作不频繁，一次排序多次查找的场景中。针对动态变

化的数据集合，二分查找将不再适用。那针对动态数据集合，如何在其中快速查找某个数据

呢？别急，等到二叉树那一节我会详细讲。

再次，数据量太小不适合二分查找。

如果要处理的数据量很小，完全没有必要用二分查找，顺序遍历就足够了。比如我们在一个

大小为 10 的数组中查找一个元素，不管用二分查找还是顺序遍历，查找速度都差不多。只

有数据量比较大的时候，二分查找的优势才会比较明显。

不过，这里有一个例外。如果数据之间的比较操作非常耗时，不管数据量大小，我都推荐使

用二分查找。比如，数组中存储的都是长度超过 300 的字符串，如此长的两个字符串之间

比对大小，就会非常耗时。我们需要尽可能地减少比较次数，而比较次数的减少会大大提高

性能，这个时候二分查找就比顺序遍历更有优势。

最后，数据量太大也不适合二分查找。

二分查找的底层需要依赖数组这种数据结构，而数组为了支持随机访问的特性，要求内存空

间连续，对内存的要求比较苛刻。比如，我们有 1GB 大小的数据，如果希望用数组来存

储，那就需要 1GB 的连续内存空间。

注意这里的“连续”二字，也就是说，即便有 2GB 的内存空间剩余，但是如果这剩余的

2GB 内存空间都是零散的，没有连续的 1GB 大小的内存空间，那照样无法申请一个 1GB

大小的数组。而我们的二分查找是作用在数组这种数据结构之上的，所以太大的数据用数组

存储就比较吃力了，也就不能用二分查找了。

解答开篇

二分查找的理论知识你应该已经掌握了。我们来看下开篇的思考题：如何在 1000 万个整数

中快速查找某个整数？

这个问题并不难。我们的内存限制是 100MB，每个数据大小是 8 字节，最简单的办法就是

将数据存储在数组中，内存占用差不多是 80MB，符合内存的限制。借助今天讲的内容，

我们可以先对这 1000 万数据从小到大排序，然后再利用二分查找算法，就可以快速地查找

想要的数据了。

看起来这个问题并不难，很轻松就能解决。实际上，它暗藏了“玄机”。如果你对数据结构

和算法有一定了解，知道散列表、二叉树这些支持快速查找的动态数据结构。你可能会觉

得，用散列表和二叉树也可以解决这个问题。实际上是不行的。

虽然大部分情况下，用二分查找可以解决的问题，用散列表、二叉树都可以解决。但是，我

们后面会讲，不管是散列表还是二叉树，都会需要比较多的额外的内存空间。如果用散列表

或者二叉树来存储这 1000 万的数据，用 100MB 的内存肯定是存不下的。而二分查找底层

依赖的是数组，除了数据本身之外，不需要额外存储其他信息，是最省内存空间的存储方

式，所以刚好能在限定的内存大小下解决这个问题。

内容小结

今天我们学习了一种针对有序数据的高效查找算法，二分查找，它的时间复杂度是

O(logn)。

二分查找的核心思想理解起来非常简单，有点类似分治思想。即每次都通过跟区间中的中间

元素对比，将待查找的区间缩小为一半，直到找到要查找的元素，或者区间被缩小为 0。但

是二分查找的代码实现比较容易写错。你需要着重掌握它的三个容易出错的地方：循环退出

条件、mid 的取值，low 和 high 的更新。

二分查找虽然性能比较优秀，但应用场景也比较有限。底层必须依赖数组，并且还要求数据

是有序的。对于较小规模的数据查找，我们直接使用顺序遍历就可以了，二分查找的优势并

不明显。二分查找更适合处理静态数据，也就是没有频繁的数据插入、删除操作。

课后思考

1. 如何编程实现“求一个数的平方根”？要求精确到小数点后 6 位。

2. 我刚才说了，如果数据使用链表存储，二分查找的时间复杂就会变得很高，那查找的时

间复杂度究竟是多少呢？如果你自己推导一下，你就会深刻地认识到，为何我们会选择

用数组而不是链表来实现二分查找了。

欢迎留言和我分享，我会第一时间给你反馈。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 14 | 排序优化：如何实现一个通用的、高性能的排序函数？

下一篇 16 | 二分查找（下）：如何快速定位IP对应的省份地址？

Jerry银银 置顶

2018-10-25
 322

说说第二题吧，感觉争议比较大:
假设链表长度为n，二分查找每次都要找到中间点(计算中忽略奇偶数差异):
第一次查找中间点，需要移动指针n/2次；
第二次，需要移动指针n/4次；
第三次需要移动指针n/8次； …
展开

作者回复: 分析的很好 👍 同学们可以把这条顶上去了

蒋礼锐 置顶

2018-10-24
 24

因为要精确到后六位，可以先用二分查找出整数位，然后再二分查找小数第一位，第二
位，到第六位。

整数查找很简单，判断当前数小于+1后大于即可找到，
 …
展开

Jerry银银
2018-10-26

 64

个人觉得二分查找进行优化时，还个细节注意：
将mid = lo + (hi - lo) /2，将除法优化成移位运算时，得注意运算符的优先级，千万不能
写成这样：mid = lo + (hi - lo) >> 1

作者回复: 👍

朱凯
2018-10-25

 41

精选留言 (96)  写留言

二分法求一个数x的平方根y？
解答：根据x的值，判断求解值y的取值范围。假设求解值范围min < y < max。若
0<x<1，则min=x，max=1；若x=1，则y=1；x>1，则min=1，max=x；在确定了求解
范围之后，利用二分法在求解值的范围中取一个中间值middle=(min+max)÷2，判断
middle是否是x的平方根？若(middle+0.000001)*(middle+0.000001)＞x且(middle-…
展开

Alexis何春...
2018-11-12

 31

现在在cmu读研，正在上terry lee的data structure，惊喜的发现不少他讲的点你都涵盖
了，个别他没讲到的你也涵盖了.... （当然可能因为那门课只有6学时，时间不足，但还是
给这个专栏赞一个！）

作者回复: 读cmu 太厉害了 仰慕

锐雨
2018-10-24

 19

求平方根，可以参考0到99之间猜数字的思路，99换成x, 循环到误差允许内即可，注意1这
个分界线。欢迎交流，Java如下
 public static double sqrt(double x, double precision) {
 if (x < 0) {
 return Double.NaN; …
展开

TWO STRIN...
2018-10-24

 13

1000w数据查找这个，在排序的时候不就可以找到了么？

作者回复: 如果是多次查找操作呢

Smallfly
2018-10-24

 12

1. 求平方根可以用二分查找或牛顿迭代法;

2. 有序链表的二分查找时间复杂度为 O(n)。

姜威
2018-10-31

 11

总结：二分查找（上）
一、什么是二分查找？
二分查找针对的是一个有序的数据集合，每次通过跟区间中间的元素对比，将待查找的区
间缩小为之前的一半，直到找到要查找的元素，或者区间缩小为0。
二、时间复杂度分析？ …
展开

三忌
2018-10-24

 10

def sqrt(x):
 '''
 求平方根，精确到小数点后6位
 '''
 low = 0 …
展开

Dwyane
2018-12-21

 7

1、low=mid+1，high=mid-1 学习了比较严谨条件

2、二分法求根号5
 …
展开

Victor
2018-10-27

 7

开篇的问题：1000w 个 8字节整数的中查找某个整数是否存在，且内存占用不超过100M
？ 我尝试延伸了一些解决方案：
1、由于内存限制，存储一个整数需要8字节，也就是 64 bit。此时是否可以考虑bitmap这
样的数据结构，也就是每个整数就是一个索引下标，对于每一个索引bit，1 表示存在，0
表示不存在。同时考虑到整数的数据范围，8字节整数的范围太大，这是需要考虑压缩的…

展开

啊波次的额...
2018-10-29

 4

平方根C代码，precision位数，小数点后6位是0.000001
double squareRoot(double a , double precision){
 double low,high,mid,tmp;
 if (a>1){
 low = 1; …
展开

追风者
2018-10-24

 4

王老师，考研的话可以以这个课程作为数据结构第一轮的基础复习吗。如果可以，还需要
补充其他概念知识吗

作者回复: 概念知识应该全了 考研的话还要看看考纲吧

kaka
2018-10-29

 3

关于求平方根的题，我知道一种比较巧妙的方法，那就是利用魔数，时间复杂度是 O(1)，
根据我测试，精度大概能精确到 5 位小数，也还不错。下面是 c 语言代码

float q_rsqrt(float number) {
 int i; …
展开

Liam
2018-10-26

 3

链表的二分查找，每次查找的时间复杂度都为当前数据规模的一半，所以最坏情况下：
查找次数f(n) = n + n/2 + n/4 + n/8 + ... + 1 = n(1 + 1/2 + 1/4 + ... 1/n)

情况1： n = 2^k, 根据等比数列公式 f(n) = 2^k * (1 - (1/2) ^k) / (1 - 1/2) = 2n - 1
情况2：n != 2^k, 假设k无穷大，则limf(n) = n (1 / (1 - 1/2)) = 2n, 实际上k < +∞， …

展开

王小李
2018-10-24

 3

平方根可以用牛顿迭代实现。

展开

作者回复: 哈哈 同学的回答超纲了 👍

C家族铁粉
2018-10-24

 3

二分法一直在用，知道太小的、非数组、非有序的确实不适合用，不过确实没有注意到太
大的局限性！get√了~

展开

Kudo
2018-10-25

 2

二分查找Python实现：
1、非递归方式
def bsearch(ls, value):
 low, high = 0, len(ls)-1
 while low <= high: …
展开

Monday
2018-10-25

 2

思考题2：二分查找使用在链表上实现起来很麻烦，最坏情况下的查询和比较次数之和是：
f(n)=n+(n/2+n/4+...+n/2^k)+k
其中第一个n是获取链表长度，圆括号里为根据low获取middle元素比较次数，k为循环次
数且2^k=n
f(n)=n(2 - 1/2^k)+k 其中2^k=n …
展开

