
16 | 二分查找（下）：如何快速定位IP对应的省份地址？
2018-10-26 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 11:47 大小 5.40M

通过 IP 地址来查找 IP 归属地的功能，不知道你有没有用过？没用过也没关系，你现在可以

打开百度，在搜索框里随便输一个 IP 地址，就会看到它的归属地。





 下载APP 

这个功能并不复杂，它是通过维护一个很大的 IP 地址库来实现的。地址库中包括 IP 地址范

围和归属地的对应关系。

当我们想要查询 202.102.133.13 这个 IP 地址的归属地时，我们就在地址库中搜索，发现

这个 IP 地址落在 [202.102.133.0, 202.102.133.255] 这个地址范围内，那我们就可以将这

个 IP 地址范围对应的归属地“山东东营市”显示给用户了。

现在我的问题是，在庞大的地址库中逐一比对 IP 地址所在的区间，是非常耗时的。假设我

们有 12 万条这样的 IP 区间与归属地的对应关系，如何快速定位出一个 IP 地址的归属地

呢？

是不是觉得比较难？不要紧，等学完今天的内容，你就会发现这个问题其实很简单。

上一节我讲了二分查找的原理，并且介绍了最简单的一种二分查找的代码实现。今天我们来

讲几种二分查找的变形问题。

1

2

3

4

5

6

[202.102.133.0, 202.102.133.255] 山东东营市
[202.102.135.0, 202.102.136.255] 山东烟台
[202.102.156.34, 202.102.157.255] 山东青岛
[202.102.48.0, 202.102.48.255] 江苏宿迁
[202.102.49.15, 202.102.51.251] 江苏泰州
[202.102.56.0, 202.102.56.255] 江苏连云港

复制代码

不知道你有没有听过这样一个说法：“十个二分九个错”。二分查找虽然原理极其简单，但

是想要写出没有 Bug 的二分查找并不容易。

唐纳德·克努特（Donald E.Knuth）在《计算机程序设计艺术》的第 3 卷《排序和查找》中

说到：“尽管第一个二分查找算法于 1946 年出现，然而第一个完全正确的二分查找算法实

现直到 1962 年才出现。”

你可能会说，我们上一节学的二分查找的代码实现并不难写啊。那是因为上一节讲的只是二

分查找中最简单的一种情况，在不存在重复元素的有序数组中，查找值等于给定值的元素。

最简单的二分查找写起来确实不难，但是，二分查找的变形问题就没那么好写了。

二分查找的变形问题很多，我只选择几个典型的来讲解，其他的你可以借助我今天讲的思路

自己来分析。

需要特别说明一点，为了简化讲解，今天的内容，我都以数据是从小到大排列为前提，如果

你要处理的数据是从大到小排列的，解决思路也是一样的。同时，我希望你最好先自己动手

试着写一下这 4 个变形问题，然后再看我的讲述，这样你就会对我说的“二分查找比较难

写”有更加深的体会了。

变体一：查找第一个值等于给定值的元素

上一节中的二分查找是最简单的一种，即有序数据集合中不存在重复的数据，我们在其中查

找值等于某个给定值的数据。如果我们将这个问题稍微修改下，有序数据集合中存在重复的

数据，我们希望找到第一个值等于给定值的数据，这样之前的二分查找代码还能继续工作

吗？

比如下面这样一个有序数组，其中，a[5]，a[6]，a[7] 的值都等于 8，是重复的数据。我们

希望查找第一个等于 8 的数据，也就是下标是 5 的元素。

如果我们用上一节课讲的二分查找的代码实现，首先拿 8 与区间的中间值 a[4] 比较，8 比

6 大，于是在下标 5 到 9 之间继续查找。下标 5 和 9 的中间位置是下标 7，a[7] 正好等于

8，所以代码就返回了。

尽管 a[7] 也等于 8，但它并不是我们想要找的第一个等于 8 的元素，因为第一个值等于 8

的元素是数组下标为 5 的元素。我们上一节讲的二分查找代码就无法处理这种情况了。所

以，针对这个变形问题，我们可以稍微改造一下上一节的代码。

100 个人写二分查找就会有 100 种写法。网上有很多关于变形二分查找的实现方法，有很

多写得非常简洁，比如下面这个写法。但是，尽管简洁，理解起来却非常烧脑，也很容易写

错。

1

2

3

4

5

6

7

8

9

public int bsearch(int[] a, int n, int value) {
 int low = 0;
 int high = n - 1;
 while (low <= high) {
 int mid = low + ((high - low) >> 1);
 if (a[mid] >= value) {
 high = mid - 1;
 } else {
 low = mid + 1;

复制代码

看完这个实现之后，你是不是觉得很不好理解？如果你只是死记硬背这个写法，我敢保证，

过不了几天，你就会全都忘光，再让你写，90% 的可能会写错。所以，我换了一种实现方

法，你看看是不是更容易理解呢？

我来稍微解释一下这段代码。a[mid] 跟要查找的 value 的大小关系有三种情况：大于、小

于、等于。对于 a[mid]>value 的情况，我们需要更新 high= mid-1；对于 a[mid]<value

的情况，我们需要更新 low=mid+1。这两点都很好理解。那当 a[mid]=value 的时候应该

如何处理呢？

如果我们查找的是任意一个值等于给定值的元素，当 a[mid] 等于要查找的值时，a[mid]

就是我们要找的元素。但是，如果我们求解的是第一个值等于给定值的元素，当 a[mid] 等

于要查找的值时，我们就需要确认一下这个 a[mid] 是不是第一个值等于给定值的元素。

10

11

12

13

14

15

 }
 }

 if (low < n && a[low]==value) return low;
 else return -1;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public int bsearch(int[] a, int n, int value) {
 int low = 0;
 int high = n - 1;
 while (low <= high) {
 int mid = low + ((high - low) >> 1);
 if (a[mid] > value) {
 high = mid - 1;
 } else if (a[mid] < value) {
 low = mid + 1;
 } else {
 if ((mid == 0) || (a[mid - 1] != value)) return mid;
 else high = mid - 1;
 }
 }
 return -1;
}

复制代码

我们重点看第 11 行代码。如果 mid 等于 0，那这个元素已经是数组的第一个元素，那它

肯定是我们要找的；如果 mid 不等于 0，但 a[mid] 的前一个元素 a[mid-1] 不等于

value，那也说明 a[mid] 就是我们要找的第一个值等于给定值的元素。

如果经过检查之后发现 a[mid] 前面的一个元素 a[mid-1] 也等于 value，那说明此时的

a[mid] 肯定不是我们要查找的第一个值等于给定值的元素。那我们就更新 high=mid-1，

因为要找的元素肯定出现在 [low, mid-1] 之间。

对比上面的两段代码，是不是下面那种更好理解？实际上，很多人都觉得变形的二分查找很

难写，主要原因是太追求第一种那样完美、简洁的写法。而对于我们做工程开发的人来说，

代码易读懂、没 Bug，其实更重要，所以我觉得第二种写法更好。

变体二：查找最后一个值等于给定值的元素

前面的问题是查找第一个值等于给定值的元素，我现在把问题稍微改一下，查找最后一个值

等于给定值的元素，又该如何做呢？

如果你掌握了前面的写法，那这个问题你应该很轻松就能解决。你可以先试着实现一下，然

后跟我写的对比一下。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public int bsearch(int[] a, int n, int value) {
 int low = 0;
 int high = n - 1;
 while (low <= high) {
 int mid = low + ((high - low) >> 1);
 if (a[mid] > value) {
 high = mid - 1;
 } else if (a[mid] < value) {
 low = mid + 1;
 } else {
 if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
 else low = mid + 1;
 }
 }
 return -1;
}

复制代码

我们还是重点看第 11 行代码。如果 a[mid] 这个元素已经是数组中的最后一个元素了，那

它肯定是我们要找的；如果 a[mid] 的后一个元素 a[mid+1] 不等于 value，那也说明

a[mid] 就是我们要找的最后一个值等于给定值的元素。

如果我们经过检查之后，发现 a[mid] 后面的一个元素 a[mid+1] 也等于 value，那说明当

前的这个 a[mid] 并不是最后一个值等于给定值的元素。我们就更新 low=mid+1，因为要

找的元素肯定出现在 [mid+1, high] 之间。

变体三：查找第一个大于等于给定值的元素

现在我们再来看另外一类变形问题。在有序数组中，查找第一个大于等于给定值的元素。比

如，数组中存储的这样一个序列：3，4，6，7，10。如果查找第一个大于等于 5 的元素，

那就是 6。

实际上，实现的思路跟前面的那两种变形问题的实现思路类似，代码写起来甚至更简洁。

如果 a[mid] 小于要查找的值 value，那要查找的值肯定在 [mid+1, high] 之间，所以，我

们更新 low=mid+1。

对于 a[mid] 大于等于给定值 value 的情况，我们要先看下这个 a[mid] 是不是我们要找的

第一个值大于等于给定值的元素。如果 a[mid] 前面已经没有元素，或者前面一个元素小于

要查找的值 value，那 a[mid] 就是我们要找的元素。这段逻辑对应的代码是第 7 行。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public int bsearch(int[] a, int n, int value) {
 int low = 0;
 int high = n - 1;
 while (low <= high) {
 int mid = low + ((high - low) >> 1);
 if (a[mid] >= value) {
 if ((mid == 0) || (a[mid - 1] < value)) return mid;
 else high = mid - 1;
 } else {
 low = mid + 1;
 }
 }
 return -1;
}

复制代码

如果 a[mid-1] 也大于等于要查找的值 value，那说明要查找的元素在 [low, mid-1] 之间，

所以，我们将 high 更新为 mid-1。

变体四：查找最后一个小于等于给定值的元素

现在，我们来看最后一种二分查找的变形问题，查找最后一个小于等于给定值的元素。比

如，数组中存储了这样一组数据：3，5，6，8，9，10。最后一个小于等于 7 的元素就是

6。是不是有点类似上面那一种？实际上，实现思路也是一样的。

有了前面的基础，你完全可以自己写出来了，所以我就不详细分析了。我把代码贴出来，你

可以写完之后对比一下。

解答开篇

好了，现在我们回头来看开篇的问题：如何快速定位出一个 IP 地址的归属地？

现在这个问题应该很简单了。如果 IP 区间与归属地的对应关系不经常更新，我们可以先预

处理这 12 万条数据，让其按照起始 IP 从小到大排序。如何来排序呢？我们知道，IP 地址

可以转化为 32 位的整型数。所以，我们可以将起始地址，按照对应的整型值的大小关系，

从小到大进行排序。

然后，这个问题就可以转化为我刚讲的第四种变形问题“在有序数组中，查找最后一个小于

等于某个给定值的元素”了。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public int bsearch7(int[] a, int n, int value) {
 int low = 0;
 int high = n - 1;
 while (low <= high) {
 int mid = low + ((high - low) >> 1);
 if (a[mid] > value) {
 high = mid - 1;
 } else {
 if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
 else low = mid + 1;
 }
 }
 return -1;
}

复制代码

当我们要查询某个 IP 归属地时，我们可以先通过二分查找，找到最后一个起始 IP 小于等于

这个 IP 的 IP 区间，然后，检查这个 IP 是否在这个 IP 区间内，如果在，我们就取出对应的

归属地显示；如果不在，就返回未查找到。

内容小结

上一节我说过，凡是用二分查找能解决的，绝大部分我们更倾向于用散列表或者二叉查找

树。即便是二分查找在内存使用上更节省，但是毕竟内存如此紧缺的情况并不多。那二分查

找真的没什么用处了吗？

实际上，上一节讲的求“值等于给定值”的二分查找确实不怎么会被用到，二分查找更适合

用在“近似”查找问题，在这类问题上，二分查找的优势更加明显。比如今天讲的这几种变

体问题，用其他数据结构，比如散列表、二叉树，就比较难实现了。

变体的二分查找算法写起来非常烧脑，很容易因为细节处理不好而产生 Bug，这些容易出

错的细节有：终止条件、区间上下界更新方法、返回值选择。所以今天的内容你最好能用自

己实现一遍，对锻炼编码能力、逻辑思维、写出 Bug free 代码，会很有帮助。

课后思考

我们今天讲的都是非常规的二分查找问题，今天的思考题也是一个非常规的二分查找问题。

如果有序数组是一个循环有序数组，比如 4，5，6，1，2，3。针对这种情况，如何实现一

个求“值等于给定值”的二分查找算法呢？

欢迎留言和我分享，我会第一时间给你反馈。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 15 | 二分查找（上）：如何用最省内存的方式实现快速查找功能？

下一篇 17 | 跳表：为什么Redis一定要用跳表来实现有序集合？

Smallfly 置顶

2018-10-27
 134

有三种方法查找循环有序数组

 一、
 1. 找到分界下标，分成两个有序数组
 2. 判断目标值在哪个有序数据范围内，做二分查找 …
展开

zixuan
2018-10-31

 42

思考题对应leetcode 33题，大家可以去练习

精选留言 (103)  写留言

展开

Victor
2018-10-27

 9

今天的IP地址归属地问题，从工程实现的角度考虑，我更偏向于直接使用关系型数据库实
现。
也就是将12w条归属地与IP区间的开始、结束存入数据库中。
数据库表ip_table有如下字段：area_name | start_ip | end_ip ，start_ip及end_ip 均建立
索引 …
展开

作者回复: 数据库可以 单性能会受限

王艳红
2019-03-05

 8

王老师，有一个疑惑不太明白
int mid = low + ((high - low)>>1)
这句，为什么要用这种写法呢？我看之前的简单的额二分查找是
int mid = (low + high)/2

展开

作者回复: 下面的写法有可能会导致溢出，比如low很大，high也很大，之和就溢出了。

charon
2018-10-26

 8

用JavaScript实现的最基本的思考题：
array是传入的数组，value是要查找的值
思路是通过对比low,high的值来判断value所在的区间，不用多循环一遍找偏移量了~
 function search(array,value){
 let low = 0; …
展开

舍得
2018-10-27

 6

第一段代码有漏洞，且不说int能不能表示数组的下标问题，毕竟这个数组能越界说明相当
庞大了；
主要问题在于，如果我给定的数大于任何一个数组元素，low就会等于n，n是数组越界后
的第一个元素，如果它刚好是要查找的值呢？？

展开

作者回复: 谢谢指正 我稍后改下

菜鸡程序员
2018-12-07

 4

1.如果不知道分界点，找寻分界点没有意义，不如直接遍历。
2.如果知道分界点，查看在哪一边，然后二分法，或者偏移量计算,二分法

老师,我今天这种可以吗: …
展开

姜威
2018-11-03

 4

总结：二分查找（下）
一、四种常见的二分查找变形问题
1.查找第一个值等于给定值的元素
2.查找最后一个值等于给定值的元素
3.查找第一个大于等于给定值的元素 …
展开

狼的诱惑
2018-10-31

 4

@老师，请老师或其他高人回复指教
/**
 * 例如： 4 5 6 1 2 3
 * 循环数组的二分查找 总体时间复杂度O(n)
 */ …
展开

勤劳的小胖...
2018-10-27

 3

1. 先二分遍历找到分隔点index，特征是<pre, >=next;
2. 把数组分成二个部分，[0,index-1], [index,length-1];
3. 分别使用二分查找，找到给定的值。
时间复杂度为2*log(n). 不确定有什么更好的办法。

展开

komo0104
2018-10-26

 3

给原来的index加上偏移量。
比如原来的二分查找代码从0开始到n-1结束，现在为x到x - 1 (即n-1+x-n)。
x为开始循环处的索引，例子里为3 （1所在索引）。需要扫描一遍数组找到x，复杂度
O(n)。其余和普通二分查找一样，需要多判断index not out of bound。如果索引超过n
了要减n。 …
展开

毅仔
2018-12-23

 2

第一次见到逻辑这么清晰的二分查找代码，已经被老师俘获了，太优雅了

QFann
2018-12-18

 2

public int search(int[] nums, int target) {
 if(nums.length ==0) return -1;
 if(nums.length ==1){
 if(nums[0] == target) return 0;
 else return -1; …
展开

晓杉
2018-11-16

 2

老师，我有一个疑问。
使用二分查找的前提是有序数组。

对于本节IP地址问题，我们先进行排序再进行查找，我理解应该时间复杂度是排序平均
O(nLogn)再加上二分查找O(logn)
比单纯的顺序遍历O(n)要慢许多了。 …
展开

Monday
2018-10-29

 2

二分的四种变种写法。个人觉得都是分三种情况进行讨论，再多注意判断边界值，三种情
况为：
a[mid]<value
a[mid]=value
a[mid]>value； …
展开

朱坤
2019-02-25

 1

置顶的同学的思路一，即先找分界再判断在哪个数组，再二分，其实是可以做到O(Log N)
的，找分界的点的规则就是找到首个小于a[0]的元素，思路用老师4个转换问题的解法就可
以。按评论做了下leetcode33题，感觉会比较老师给的思考题描述清晰。。因为老师说的
找问题，没有明确有几组循环数组。。

展开

牛顿的苹果...
2019-01-31

 1

思考题：
可以考虑将数组分为N个有序数组，分别进行二分查找。
代码实现：
 public int circleBinarySearch(int[] a, int value){
 int low = 0, high=0; …
展开

疾风狂草
2018-12-10

 1

老师，你说二分查找更适合用在“近似”查找问题，在这类问题上，二分查找的优势更加
明显。这种问题链式哈希表不是更擅长吗？

展开

作者回复: 哈希表是精准查找

Jeson
2018-10-28

 1

#查找第一个值等于给定值的元素
def bsearchFirst(nums, val):
 low, high = 0, len(nums) - 1
 while low <= high:
 mid = low + ((high - low) >> 1) …
展开

锐雨
2018-10-27

 1

关于循环有序数组的问题，假设array无重复元素的话，我们可以先二分法将array分成两个
递增数组，再分别采用二分法。有不妥之处忘赐教哦, java：

 public static int search(int x, int[] array) {
 if (null == array || array.length == 0) { …
展开

