
24 | 二叉树基础（下）：有了如此高效的散列表，为什么还需要二叉
树？
2018-11-14 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 12:21 大小 5.66M

上一节我们学习了树、二叉树以及二叉树的遍历，今天我们再来学习一种特殊的的二叉树，

二叉查找树。二叉查找树最大的特点就是，支持动态数据集合的快速插入、删除、查找操

作。

我们之前说过，散列表也是支持这些操作的，并且散列表的这些操作比二叉查找树更高效，

时间复杂度是 O(1)。既然有了这么高效的散列表，使用二叉树的地方是不是都可以替换成

散列表呢？有没有哪些地方是散列表做不了，必须要用二叉树来做的呢？

带着这些问题，我们就来学习今天的内容，二叉查找树！

二叉查找树（Binary Search Tree）





 下载APP 

二叉查找树是二叉树中最常用的一种类型，也叫二叉搜索树。顾名思义，二叉查找树是为了

实现快速查找而生的。不过，它不仅仅支持快速查找一个数据，还支持快速插入、删除一个

数据。它是怎么做到这些的呢？

这些都依赖于二叉查找树的特殊结构。二叉查找树要求，在树中的任意一个节点，其左子树

中的每个节点的值，都要小于这个节点的值，而右子树节点的值都大于这个节点的值。 我

画了几个二叉查找树的例子，你一看应该就清楚了。

前面我们讲到，二叉查找树支持快速查找、插入、删除操作，现在我们就依次来看下，这三

个操作是如何实现的。

1. 二叉查找树的查找操作

首先，我们看如何在二叉查找树中查找一个节点。我们先取根节点，如果它等于我们要查找

的数据，那就返回。如果要查找的数据比根节点的值小，那就在左子树中递归查找；如果要

查找的数据比根节点的值大，那就在右子树中递归查找。

这里我把查找的代码实现了一下，贴在下面了，结合代码，理解起来会更加容易。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public class BinarySearchTree {
 private Node tree;

 public Node find(int data) {
 Node p = tree;
 while (p != null) {
 if (data < p.data) p = p.left;
 else if (data > p.data) p = p.right;
 else return p;
 }
 return null;
 }

 public static class Node {
 private int data;
 private Node left;
 private Node right;

 public Node(int data) {
 this.data = data;
 }
 }
}

复制代码

2. 二叉查找树的插入操作

二叉查找树的插入过程有点类似查找操作。新插入的数据一般都是在叶子节点上，所以我们

只需要从根节点开始，依次比较要插入的数据和节点的大小关系。

如果要插入的数据比节点的数据大，并且节点的右子树为空，就将新数据直接插到右子节点

的位置；如果不为空，就再递归遍历右子树，查找插入位置。同理，如果要插入的数据比节

点数值小，并且节点的左子树为空，就将新数据插入到左子节点的位置；如果不为空，就再

递归遍历左子树，查找插入位置。

同样，插入的代码我也实现了一下，贴在下面，你可以看看。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public void insert(int data) {
 if (tree == null) {
 tree = new Node(data);
 return;
 }

 Node p = tree;
 while (p != null) {
 if (data > p.data) {
 if (p.right == null) {
 p.right = new Node(data);
 return;
 }
 p = p.right;

复制代码

3. 二叉查找树的删除操作

二叉查找树的查找、插入操作都比较简单易懂，但是它的删除操作就比较复杂了 。针对要

删除节点的子节点个数的不同，我们需要分三种情况来处理。

第一种情况是，如果要删除的节点没有子节点，我们只需要直接将父节点中，指向要删除节

点的指针置为 null。比如图中的删除节点 55。

第二种情况是，如果要删除的节点只有一个子节点（只有左子节点或者右子节点），我们只

需要更新父节点中，指向要删除节点的指针，让它指向要删除节点的子节点就可以了。比如

图中的删除节点 13。

第三种情况是，如果要删除的节点有两个子节点，这就比较复杂了。我们需要找到这个节点

的右子树中的最小节点，把它替换到要删除的节点上。然后再删除掉这个最小节点，因为最

小节点肯定没有左子节点（如果有左子结点，那就不是最小节点了），所以，我们可以应用

上面两条规则来删除这个最小节点。比如图中的删除节点 18。

15

16

17

18

19

20

21

22

23

 } else { // data < p.data
 if (p.left == null) {
 p.left = new Node(data);
 return;
 }
 p = p.left;
 }
 }
}

老规矩，我还是把删除的代码贴在这里。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

public void delete(int data) {
 Node p = tree; // p 指向要删除的节点，初始化指向根节点

 Node pp = null; // pp 记录的是 p 的父节点

 while (p != null && p.data != data) {
 pp = p;
 if (data > p.data) p = p.right;
 else p = p.left;
 }
 if (p == null) return; // 没有找到

 // 要删除的节点有两个子节点

 if (p.left != null && p.right != null) { // 查找右子树中最小节点

 Node minP = p.right;
 Node minPP = p; // minPP 表示 minP 的父节点

 while (minP.left != null) {
 minPP = minP;
 minP = minP.left;
 }
 p.data = minP.data; // 将 minP 的数据替换到 p 中
 p = minP; // 下面就变成了删除 minP 了
 pp = minPP;
 }

 // 删除节点是叶子节点或者仅有一个子节点

 Node child; // p 的子节点

 if (p.left != null) child = p.left;
 else if (p.right != null) child = p.right;

复制代码

实际上，关于二叉查找树的删除操作，还有个非常简单、取巧的方法，就是单纯将要删除的

节点标记为“已删除”，但是并不真正从树中将这个节点去掉。这样原本删除的节点还需要

存储在内存中，比较浪费内存空间，但是删除操作就变得简单了很多。而且，这种处理方法

也并没有增加插入、查找操作代码实现的难度。

4. 二叉查找树的其他操作

除了插入、删除、查找操作之外，二叉查找树中还可以支持快速地查找最大节点和最小节

点、前驱节点和后继节点。这些操作我就不一一展示了。我会将相应的代码放到 GitHub

上，你可以自己先实现一下，然后再去上面看。

二叉查找树除了支持上面几个操作之外，还有一个重要的特性，就是中序遍历二叉查找树，

可以输出有序的数据序列，时间复杂度是 O(n)，非常高效。因此，二叉查找树也叫作二叉

排序树。

支持重复数据的二叉查找树

前面讲二叉查找树的时候，我们默认树中节点存储的都是数字。很多时候，在实际的软件开

发中，我们在二叉查找树中存储的，是一个包含很多字段的对象。我们利用对象的某个字段

作为键值（key）来构建二叉查找树。我们把对象中的其他字段叫作卫星数据。

前面我们讲的二叉查找树的操作，针对的都是不存在键值相同的情况。那如果存储的两个对

象键值相同，这种情况该怎么处理呢？我这里有两种解决方法。

第一种方法比较容易。二叉查找树中每一个节点不仅会存储一个数据，因此我们通过链表和

支持动态扩容的数组等数据结构，把值相同的数据都存储在同一个节点上。

第二种方法比较不好理解，不过更加优雅。

28

29

30

31

32

33

 else child = null;

 if (pp == null) tree = child; // 删除的是根节点

 else if (pp.left == p) pp.left = child;
 else pp.right = child;
}

每个节点仍然只存储一个数据。在查找插入位置的过程中，如果碰到一个节点的值，与要插

入数据的值相同，我们就将这个要插入的数据放到这个节点的右子树，也就是说，把这个新

插入的数据当作大于这个节点的值来处理。

当要查找数据的时候，遇到值相同的节点，我们并不停止查找操作，而是继续在右子树中查

找，直到遇到叶子节点，才停止。这样就可以把键值等于要查找值的所有节点都找出来。

对于删除操作，我们也需要先查找到每个要删除的节点，然后再按前面讲的删除操作的方

法，依次删除。

二叉查找树的时间复杂度分析

好了，对于二叉查找树常用操作的实现方式，你应该掌握得差不多了。现在，我们来分析一

下，二叉查找树的插入、删除、查找操作的时间复杂度。

实际上，二叉查找树的形态各式各样。比如这个图中，对于同一组数据，我们构造了三种二

叉查找树。它们的查找、插入、删除操作的执行效率都是不一样的。图中第一种二叉查找

树，根节点的左右子树极度不平衡，已经退化成了链表，所以查找的时间复杂度就变成了

O(n)。

我刚刚其实分析了一种最糟糕的情况，我们现在来分析一个最理想的情况，二叉查找树是一

棵完全二叉树（或满二叉树）。这个时候，插入、删除、查找的时间复杂度是多少呢？

从我前面的例子、图，以及还有代码来看，不管操作是插入、删除还是查找，时间复杂度其

实都跟树的高度成正比，也就是 O(height)。既然这样，现在问题就转变成另外一个了，

也就是，如何求一棵包含 n 个节点的完全二叉树的高度？

树的高度就等于最大层数减一，为了方便计算，我们转换成层来表示。从图中可以看出，包

含 n 个节点的完全二叉树中，第一层包含 1 个节点，第二层包含 2 个节点，第三层包含 4

个节点，依次类推，下面一层节点个数是上一层的 2 倍，第 K 层包含的节点个数就是

2^(K-1)。

不过，对于完全二叉树来说，最后一层的节点个数有点儿不遵守上面的规律了。它包含的节

点个数在 1 个到 2^(L-1) 个之间（我们假设最大层数是 L）。如果我们把每一层的节点个

数加起来就是总的节点个数 n。也就是说，如果节点的个数是 n，那么 n 满足这样一个关

系：

1 n >= 1+2+4+8+...+2^(L-2)+1

复制代码

借助等比数列的求和公式，我们可以计算出，L 的范围是 [log (n+1), log n +1]。完全二

叉树的层数小于等于 log n +1，也就是说，完全二叉树的高度小于等于 log n。

显然，极度不平衡的二叉查找树，它的查找性能肯定不能满足我们的需求。我们需要构建一

种不管怎么删除、插入数据，在任何时候，都能保持任意节点左右子树都比较平衡的二叉查

找树，这就是我们下一节课要详细讲的，一种特殊的二叉查找树，平衡二叉查找树。平衡二

叉查找树的高度接近 logn，所以插入、删除、查找操作的时间复杂度也比较稳定，是

O(logn)。

解答开篇

我们在散列表那节中讲过，散列表的插入、删除、查找操作的时间复杂度可以做到常量级的

O(1)，非常高效。而二叉查找树在比较平衡的情况下，插入、删除、查找操作时间复杂度

才是 O(logn)，相对散列表，好像并没有什么优势，那我们为什么还要用二叉查找树呢？

我认为有下面几个原因：

第一，散列表中的数据是无序存储的，如果要输出有序的数据，需要先进行排序。而对于二

叉查找树来说，我们只需要中序遍历，就可以在 O(n) 的时间复杂度内，输出有序的数据序

列。

第二，散列表扩容耗时很多，而且当遇到散列冲突时，性能不稳定，尽管二叉查找树的性能

不稳定，但是在工程中，我们最常用的平衡二叉查找树的性能非常稳定，时间复杂度稳定在

O(logn)。

第三，笼统地来说，尽管散列表的查找等操作的时间复杂度是常量级的，但因为哈希冲突的

存在，这个常量不一定比 logn 小，所以实际的查找速度可能不一定比 O(logn) 快。加上哈

希函数的耗时，也不一定就比平衡二叉查找树的效率高。

第四，散列表的构造比二叉查找树要复杂，需要考虑的东西很多。比如散列函数的设计、冲

突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题，而且这个问题

的解决方案比较成熟、固定。

2 n <= 1+2+4+8+...+2^(L-2)+2^(L-1)

2 2

2 2

最后，为了避免过多的散列冲突，散列表装载因子不能太大，特别是基于开放寻址法解决冲

突的散列表，不然会浪费一定的存储空间。

综合这几点，平衡二叉查找树在某些方面还是优于散列表的，所以，这两者的存在并不冲

突。我们在实际的开发过程中，需要结合具体的需求来选择使用哪一个。

内容小结

今天我们学习了一种特殊的二叉树，二叉查找树。它支持快速地查找、插入、删除操作。

二叉查找树中，每个节点的值都大于左子树节点的值，小于右子树节点的值。不过，这只是

针对没有重复数据的情况。对于存在重复数据的二叉查找树，我介绍了两种构建方法，一种

是让每个节点存储多个值相同的数据；另一种是，每个节点中存储一个数据。针对这种情

况，我们只需要稍加改造原来的插入、删除、查找操作即可。

在二叉查找树中，查找、插入、删除等很多操作的时间复杂度都跟树的高度成正比。两个极

端情况的时间复杂度分别是 O(n) 和 O(logn)，分别对应二叉树退化成链表的情况和完全二

叉树。

为了避免时间复杂度的退化，针对二叉查找树，我们又设计了一种更加复杂的树，平衡二叉

查找树，时间复杂度可以做到稳定的 O(logn)，下一节我们具体来讲。

课后思考

今天我讲了二叉树高度的理论分析方法，给出了粗略的数量级。如何通过编程，求出一棵给

定二叉树的确切高度呢？

欢迎留言和我分享，我会第一时间给你反馈。

我已将本节内容相关的详细代码更新到 GitHub，戳此即可查看。

https://github.com/wangzheng0822/algo

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 23 | 二叉树基础（上）：什么样的二叉树适合用数组来存储？

下一篇 25 | 红黑树（上）：为什么工程中都用红黑树这种二叉树？

失火的夏天
2018-11-14

 162

确定二叉树高度有两种思路：第一种是深度优先思想的递归，分别求左右子树的高度。当
前节点的高度就是左右子树中较大的那个+1；第二种可以采用层次遍历的方式，每一层记
录都记录下当前队列的长度，这个是队尾，每一层队头从0开始。然后每遍历一个元素，队
头下标+1。直到队头下标等于队尾下标。这个时候表示当前层遍历完成。每一层刚开始遍
历的时候，树的高度+1。最后队列为空，就能得到树的高度。

展开

作者回复: 👍 大家可以看看这条留言

精选留言 (104)  写留言

拉欧
2018-11-14

 61

递归法，根节点高度=max(左子树高度，右子树高度)+1

作者回复: 👍 精髓

一般社员
2018-11-14

 34

老师，不理解删除有两个子节点那段代码，最后删除minp，不是minpp.left =null,minp
=null吗

Smallfly
2018-11-15

 25

老师我有一个疑问，二叉树删除时，如果待删除节点有两个子节点，能否用左子树中的最
大值来替换待删除节点呢？

展开

作者回复: 好像也可以 👍

🌟
2018-11-26

 14

姜威老大没写总结笔记了吗？我是个算法菜鸟萌新，一直看着姜大佬的笔记总结学
习。。。

Monday
2018-11-17

 14

1、思考题：leetcode 104 题，可以使用递归法。
递归公式： depth =Math.max(maxDepth(node.left), maxDepth(node.right))+ 1;
递归出口： depth = 0 (node == null)
2、二叉查找树的删除操作（无重复的数据）leetcode 450。
根据老师的思路，先不看代码，自己写了好长段时间，写出来都跑过leetcode的所有案…
展开

作者回复: 是的 钻研精神值得称赞👍

www.xnsms...
2018-11-15

 11

p.data = minP.data; // 将 minP 的数据替换到 p 中
p = minP; // 下面就变成了删除 minP 了
pp = minPP;

 …
展开

作者回复: 😄 是不好看懂

莫弹弹
2018-11-14

 8

在sf的微信公众号上刚好看到二叉树相关的文章，二叉树常规操作都有了，基本思路是：

- 只有一个根结点时，二叉树深度为 1
- 只有左子树时，二叉树深度为左子树深度加 1
- 只有右子树时，二叉树深度为右子树深度加 1 …
展开

作者回复: 👍

追风者
2018-11-15

 5

更新二十多篇了，王老师把前面文章的课后思考题都总结回答一下吧。

作者回复: 好的 基础篇完了后会集中答疑一下

一个慢慢爬...
2018-11-14

 4

p = minP; // 下面就变成了删除 minP 了...
pp = minPP;
老师，对这里不太搞懂，似乎也有些人对这里感到困惑，老师可以对这两句集中解释下嘛

作者回复: 好的。我们用后继节点替换到要删除节点的位置。 然后就变成删除后继节点的问题了。

为了逻辑统一 代码书写简洁。我们把后继节点赋给了p

Ryan-Hou
2018-11-14

 4

平衡树相比于哈希表，保存了节点数据间的顺序信息，所以操作的时间复杂度上会比哈希
表大(因为额外的提供了顺序性，对应的会有代价)。也正因为保存了顺序性，平衡树可以方
便的实现min, max, ceil, floor 等操作，所以个人认为这两种数据结构最大的不同在于这
里，有不同的取舍

展开

等风来
2018-11-14

 3

老师:删除示例的25节点的右节点[21]错误;
删除节点有两个节点
p = minP; // 下面就变成了删除 minP 了...
pp = minPP;
是不是应该改成: minPP.Left = minP.Right;

展开

作者回复: 图已经改正 多谢指出。

代码应该没错

kakasi
2018-11-28

 2

老师，看了二叉树的优点和适用场景，跳表不是都满足吗？

james
2018-11-22

 2

散列表装载因子不能太大，特别是基于开放寻址法解决冲突的散列表，不然会浪费内存空
间。
修改：应该是装在因子不能太小吧

展开

PhilZhang
2018-11-18

 2

对于二叉搜索树各种操作的复杂度，有更容易理解的解释方法:每次操作后数据量都减少了
一半，所以复杂度自然是logN。

展开

作者回复: 👍

李沁
2019-05-01

 1

这两句代码一开始看得很晕
p = minP; // 下面就变成了删除 minP 了
pp = minPP;

后面想到其实代码还没有终结，如果minP是右子树的最左节点，那么这个节点肯定是没…
展开

陆老师
2019-03-13

 1

有一种更容易理解复杂度的思路，二叉查找树类似二分法搜索，每次缩小一半的区间，而
二分查找法时间复杂度就是logN

展开

作者回复: 是的，👍

allean  1

2019-01-14

连续看好几遍，每一次的感受都更深刻，谢谢老师。可是有一点要吐槽下，老师给变量命
名也有点太随意了啊，二叉树删除节点那个，好多p啊，看的晕了都

展开

humor
2018-12-28

 1

装载因子太大，不是浪费空间，而是节省空间吧？

展开

产品助理
2018-11-20

 1

n <= 1+2+4+8+...+2^(L-2)+2^(L-1)

应该是 < 吧？ 或者是：

n <= 1+2+4+8+...+2^(L-2)+2^(L-1)-1 …
展开

作者回复: 文章没写错 你的公式怎么来的呢

