
33 | 字符串匹配基础（中）：如何实现文本编辑器中的查找功能？
2018-12-07 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 18:20 大小 16.80M

文本编辑器中的查找替换功能，我想你应该不陌生吧？比如，我们在 Word 中把一个单词

统一替换成另一个，用的就是这个功能。你有没有想过，它是怎么实现的呢？

当然，你用上一节讲的 BF 算法和 RK 算法，也可以实现这个功能，但是在某些极端情况

下，BF 算法性能会退化的比较严重，而 RK 算法需要用到哈希算法，而设计一个可以应对

各种类型字符的哈希算法并不简单。

对于工业级的软件开发来说，我们希望算法尽可能的高效，并且在极端情况下，性能也不要

退化的太严重。那么，对于查找功能是重要功能的软件来说，比如一些文本编辑器，它们的

查找功能都是用哪种算法来实现的呢？有没有比 BF 算法和 RK 算法更加高效的字符串匹配

算法呢？





 下载APP 

今天，我们就来学习 BM（Boyer-Moore）算法。它是一种非常高效的字符串匹配算法，

有实验统计，它的性能是著名的KMP 算法的 3 到 4 倍。BM 算法的原理很复杂，比较难

懂，学起来会比较烧脑，我会尽量给你讲清楚，同时也希望你做好打硬仗的准备。好，现在

我们正式开始！

BM 算法的核心思想

我们把模式串和主串的匹配过程，看作模式串在主串中不停地往后滑动。当遇到不匹配的字

符时，BF 算法和 RK 算法的做法是，模式串往后滑动一位，然后从模式串的第一个字符开

始重新匹配。我举个例子解释一下，你可以看我画的这幅图。

在这个例子里，主串中的 c，在模式串中是不存在的，所以，模式串向后滑动的时候，只要

c 与模式串有重合，肯定无法匹配。所以，我们可以一次性把模式串往后多滑动几位，把模

式串移动到 c 的后面。

https://zh.wikipedia.org/wiki/%E5%85%8B%E5%8A%AA%E6%96%AF-%E8%8E%AB%E9%87%8C%E6%96%AF-%E6%99%AE%E6%8B%89%E7%89%B9%E7%AE%97%E6%B3%95

由现象找规律，你可以思考一下，当遇到不匹配的字符时，有什么固定的规律，可以将模式

串往后多滑动几位呢？这样一次性往后滑动好几位，那匹配的效率岂不是就提高了？

我们今天要讲的 BM 算法，本质上其实就是在寻找这种规律。借助这种规律，在模式串与

主串匹配的过程中，当模式串和主串某个字符不匹配的时候，能够跳过一些肯定不会匹配的

情况，将模式串往后多滑动几位。

BM 算法原理分析

BM 算法包含两部分，分别是坏字符规则（bad character rule）和好后缀规则（good

suffix shift）。我们下面依次来看，这两个规则分别都是怎么工作的。

1. 坏字符规则

前面两节讲的算法，在匹配的过程中，我们都是按模式串的下标从小到大的顺序，依次与主

串中的字符进行匹配的。这种匹配顺序比较符合我们的思维习惯，而 BM 算法的匹配顺序

比较特别，它是按照模式串下标从大到小的顺序，倒着匹配的。我画了一张图，你可以看

下。

我们从模式串的末尾往前倒着匹配，当我们发现某个字符没法匹配的时候。我们把这个没有

匹配的字符叫作坏字符（主串中的字符）。

我们拿坏字符 c 在模式串中查找，发现模式串中并不存在这个字符，也就是说，字符 c 与

模式串中的任何字符都不可能匹配。这个时候，我们可以将模式串直接往后滑动三位，将模

式串滑动到 c 后面的位置，再从模式串的末尾字符开始比较。

这个时候，我们发现，模式串中最后一个字符 d，还是无法跟主串中的 a 匹配，这个时

候，还能将模式串往后滑动三位吗？答案是不行的。因为这个时候，坏字符 a 在模式串中

是存在的，模式串中下标是 0 的位置也是字符 a。这种情况下，我们可以将模式串往后滑

动两位，让两个 a 上下对齐，然后再从模式串的末尾字符开始，重新匹配。

第一次不匹配的时候，我们滑动了三位，第二次不匹配的时候，我们将模式串后移两位，那

具体滑动多少位，到底有没有规律呢？

当发生不匹配的时候，我们把坏字符对应的模式串中的字符下标记作 si。如果坏字符在模

式串中存在，我们把这个坏字符在模式串中的下标记作 xi。如果不存在，我们把 xi 记作

-1。那模式串往后移动的位数就等于 si-xi。（注意，我这里说的下标，都是字符在模式串

的下标）。

这里我要特别说明一点，如果坏字符在模式串里多处出现，那我们在计算 xi 的时候，选择

最靠后的那个，因为这样不会让模式串滑动过多，导致本来可能匹配的情况被滑动略过。

利用坏字符规则，BM 算法在最好情况下的时间复杂度非常低，是 O(n/m)。比如，主串是

aaabaaabaaabaaab，模式串是 aaaa。每次比对，模式串都可以直接后移四位，所以，匹

配具有类似特点的模式串和主串的时候，BM 算法非常高效。

不过，单纯使用坏字符规则还是不够的。因为根据 si-xi 计算出来的移动位数，有可能是负

数，比如主串是 aaaaaaaaaaaaaaaa，模式串是 baaa。不但不会向后滑动模式串，还有可

能倒退。所以，BM 算法还需要用到“好后缀规则”。

2. 好后缀规则

好后缀规则实际上跟坏字符规则的思路很类似。你看我下面这幅图。当模式串滑动到图中的

位置的时候，模式串和主串有 2 个字符是匹配的，倒数第 3 个字符发生了不匹配的情况。

这个时候该如何滑动模式串呢？当然，我们还可以利用坏字符规则来计算模式串的滑动位

数，不过，我们也可以使用好后缀处理规则。两种规则到底如何选择，我稍后会讲。抛开这

个问题，现在我们来看，好后缀规则是怎么工作的？

我们把已经匹配的 bc 叫作好后缀，记作{u}。我们拿它在模式串中查找，如果找到了另一

个跟{u}相匹配的子串{u*}，那我们就将模式串滑动到子串{u*}与主串中{u}对齐的位置。

如果在模式串中找不到另一个等于{u}的子串，我们就直接将模式串，滑动到主串中{u}的后

面，因为之前的任何一次往后滑动，都没有匹配主串中{u}的情况。

不过，当模式串中不存在等于{u}的子串时，我们直接将模式串滑动到主串{u}的后面。这样

做是否有点太过头呢？我们来看下面这个例子。这里面 bc 是好后缀，尽管在模式串中没有

另外一个相匹配的子串{u*}，但是如果我们将模式串移动到好后缀的后面，如图所示，那就

会错过模式串和主串可以匹配的情况。

如果好后缀在模式串中不存在可匹配的子串，那在我们一步一步往后滑动模式串的过程中，

只要主串中的{u}与模式串有重合，那肯定就无法完全匹配。但是当模式串滑动到前缀与主

串中{u}的后缀有部分重合的时候，并且重合的部分相等的时候，就有可能会存在完全匹配

的情况。

所以，针对这种情况，我们不仅要看好后缀在模式串中，是否有另一个匹配的子串，我们还

要考察好后缀的后缀子串，是否存在跟模式串的前缀子串匹配的。

所谓某个字符串 s 的后缀子串，就是最后一个字符跟 s 对齐的子串，比如 abc 的后缀子串

就包括 c, bc。所谓前缀子串，就是起始字符跟 s 对齐的子串，比如 abc 的前缀子串有 a，

ab。我们从好后缀的后缀子串中，找一个最长的并且能跟模式串的前缀子串匹配的，假设

是{v}，然后将模式串滑动到如图所示的位置。

坏字符和好后缀的基本原理都讲完了，我现在回答一下前面那个问题。当模式串和主串中的

某个字符不匹配的时候，如何选择用好后缀规则还是坏字符规则，来计算模式串往后滑动的

位数？

我们可以分别计算好后缀和坏字符往后滑动的位数，然后取两个数中最大的，作为模式串往

后滑动的位数。这种处理方法还可以避免我们前面提到的，根据坏字符规则，计算得到的往

后滑动的位数，有可能是负数的情况。

BM 算法代码实现

学习完了基本原理，我们再来看，如何实现 BM 算法？

“坏字符规则”本身不难理解。当遇到坏字符时，要计算往后移动的位数 si-xi，其中 xi 的

计算是重点，我们如何求得 xi 呢？或者说，如何查找坏字符在模式串中出现的位置呢？

如果我们拿坏字符，在模式串中顺序遍历查找，这样就会比较低效，势必影响这个算法的性

能。有没有更加高效的方式呢？我们之前学的散列表，这里可以派上用场了。我们可以将模

式串中的每个字符及其下标都存到散列表中。这样就可以快速找到坏字符在模式串的位置下

标了。

关于这个散列表，我们只实现一种最简单的情况，假设字符串的字符集不是很大，每个字符

长度是 1 字节，我们用大小为 256 的数组，来记录每个字符在模式串中出现的位置。数组

的下标对应字符的 ASCII 码值，数组中存储这个字符在模式串中出现的位置。

如果将上面的过程翻译成代码，就是下面这个样子。其中，变量 b 是模式串，m 是模式串

的长度，bc 表示刚刚讲的散列表。

1

2

3

4

5

6

7

8

9

10

private static final int SIZE = 256; // 全局变量或成员变量

private void generateBC(char[] b, int m, int[] bc) {
 for (int i = 0; i < SIZE; ++i) {
 bc[i] = -1; // 初始化 bc
 }
 for (int i = 0; i < m; ++i) {
 int ascii = (int)b[i]; // 计算 b[i] 的 ASCII 值
 bc[ascii] = i;
 }
}

复制代码

掌握了坏字符规则之后，我们先把 BM 算法代码的大框架写好，先不考虑好后缀规则，仅

用坏字符规则，并且不考虑 si-xi 计算得到的移动位数可能会出现负数的情况。

代码里的注释已经很详细了，我就不再赘述了。不过，为了你方便理解，我画了一张图，将

其中的一些关键变量标注在上面了，结合着图，代码应该更好理解。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public int bm(char[] a, int n, char[] b, int m) {
 int[] bc = new int[SIZE]; // 记录模式串中每个字符最后出现的位置

 generateBC(b, m, bc); // 构建坏字符哈希表

 int i = 0; // i 表示主串与模式串对齐的第一个字符

 while (i <= n - m) {
 int j;
 for (j = m - 1; j >= 0; --j) { // 模式串从后往前匹配

 if (a[i+j] != b[j]) break; // 坏字符对应模式串中的下标是 j
 }
 if (j < 0) {
 return i; // 匹配成功，返回主串与模式串第一个匹配的字符的位置

 }
 // 这里等同于将模式串往后滑动 j-bc[(int)a[i+j]] 位
 i = i + (j - bc[(int)a[i+j]]);
 }
 return -1;
}

复制代码

至此，我们已经实现了包含坏字符规则的框架代码，只剩下往框架代码中填充好后缀规则

了。现在，我们就来看看，如何实现好后缀规则。它的实现要比坏字符规则复杂一些。

在讲实现之前，我们先简单回顾一下，前面讲过好后缀的处理规则中最核心的内容：

在不考虑效率的情况下，这两个操作都可以用很“暴力”的匹配查找方式解决。但是，如果

想要 BM 算法的效率很高，这部分就不能太低效。如何来做呢？

因为好后缀也是模式串本身的后缀子串，所以，我们可以在模式串和主串正式匹配之前，通

过预处理模式串，预先计算好模式串的每个后缀子串，对应的另一个可匹配子串的位置。这

个预处理过程比较有技巧，很不好懂，应该是这节最难懂的内容了，你要认真多读几遍。

我们先来看，如何表示模式串中不同的后缀子串呢？因为后缀子串的最后一个字符的位置是

固定的，下标为 m-1，我们只需要记录长度就可以了。通过长度，我们可以确定一个唯一

的后缀子串。

现在，我们要引入最关键的变量 suffix 数组。suffix 数组的下标 k，表示后缀子串的长

度，下标对应的数组值存储的是，在模式串中跟好后缀{u}相匹配的子串{u*}的起始下标

在模式串中，查找跟好后缀匹配的另一个子串；

在好后缀的后缀子串中，查找最长的、能跟模式串前缀子串匹配的后缀子串；

值。这句话不好理解，我举一个例子。

但是，如果模式串中有多个（大于 1 个）子串跟后缀子串{u}匹配，那 suffix 数组中该存储

哪一个子串的起始位置呢？为了避免模式串往后滑动得过头了，我们肯定要存储模式串中最

靠后的那个子串的起始位置，也就是下标最大的那个子串的起始位置。不过，这样处理就足

够了吗？

实际上，仅仅是选最靠后的子串片段来存储是不够的。我们再回忆一下好后缀规则。

我们不仅要在模式串中，查找跟好后缀匹配的另一个子串，还要在好后缀的后缀子串中，查

找最长的能跟模式串前缀子串匹配的后缀子串。

如果我们只记录刚刚定义的 suffix，实际上，只能处理规则的前半部分，也就是，在模式串

中，查找跟好后缀匹配的另一个子串。所以，除了 suffix 数组之外，我们还需要另外一个

boolean 类型的 prefix 数组，来记录模式串的后缀子串是否能匹配模式串的前缀子串。

现在，我们来看下，如何来计算并填充这两个数组的值？这个计算过程非常巧妙。

我们拿下标从 0 到 i 的子串（i 可以是 0 到 m-2）与整个模式串，求公共后缀子串。如果

公共后缀子串的长度是 k，那我们就记录 suffix[k]=j（j 表示公共后缀子串的起始下标）。

如果 j 等于 0，也就是说，公共后缀子串也是模式串的前缀子串，我们就记录

prefix[k]=true。

我们把 suffix 数组和 prefix 数组的计算过程，用代码实现出来，就是下面这个样子：

有了这两个数组之后，我们现在来看，在模式串跟主串匹配的过程中，遇到不能匹配的字符

时，如何根据好后缀规则，计算模式串往后滑动的位数？

假设好后缀的长度是 k。我们先拿好后缀，在 suffix 数组中查找其匹配的子串。如果

suffix[k] 不等于 -1（-1 表示不存在匹配的子串），那我们就将模式串往后移动 j-

suffix[k]+1 位（j 表示坏字符对应的模式串中的字符下标）。如果 suffix[k] 等于 -1，表示

模式串中不存在另一个跟好后缀匹配的子串片段。我们可以用下面这条规则来处理。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

// b 表示模式串，m 表示长度，suffix，prefix 数组事先申请好了

private void generateGS(char[] b, int m, int[] suffix, boolean[] prefix) {
 for (int i = 0; i < m; ++i) { // 初始化

 suffix[i] = -1;
 prefix[i] = false;
 }
 for (int i = 0; i < m - 1; ++i) { // b[0, i]
 int j = i;
 int k = 0; // 公共后缀子串长度

 while (j >= 0 && b[j] == b[m-1-k]) { // 与 b[0, m-1] 求公共后缀子串

 --j;
 ++k;
 suffix[k] = j+1; //j+1 表示公共后缀子串在 b[0, i] 中的起始下标

 }
 i
 if (j == -1) prefix[k] = true; // 如果公共后缀子串也是模式串的前缀子串

 }
}

复制代码

好后缀的后缀子串 b[r, m-1]（其中，r 取值从 j+2 到 m-1）的长度 k=m-r，如果

prefix[k] 等于 true，表示长度为 k 的后缀子串，有可匹配的前缀子串，这样我们可以把模

式串后移 r 位。

如果两条规则都没有找到可以匹配好后缀及其后缀子串的子串，我们就将整个模式串后移

m 位。

至此，好后缀规则的代码实现我们也讲完了。我们把好后缀规则加到前面的代码框架里，就

可以得到 BM 算法的完整版代码实现。

1 // a,b 表示主串和模式串；n，m 表示主串和模式串的长度。

复制代码

BM 算法的性能分析及优化

我们先来分析 BM 算法的内存消耗。整个算法用到了额外的 3 个数组，其中 bc 数组的大

小跟字符集大小有关，suffix 数组和 prefix 数组的大小跟模式串长度 m 有关。

如果我们处理字符集很大的字符串匹配问题，bc 数组对内存的消耗就会比较多。因为好后

缀和坏字符规则是独立的，如果我们运行的环境对内存要求苛刻，可以只使用好后缀规则，

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

public int bm(char[] a, int n, char[] b, int m) {
 int[] bc = new int[SIZE]; // 记录模式串中每个字符最后出现的位置

 generateBC(b, m, bc); // 构建坏字符哈希表

 int[] suffix = new int[m];
 boolean[] prefix = new boolean[m];
 generateGS(b, m, suffix, prefix);
 int i = 0; // j 表示主串与模式串匹配的第一个字符

 while (i <= n - m) {
 int j;
 for (j = m - 1; j >= 0; --j) { // 模式串从后往前匹配

 if (a[i+j] != b[j]) break; // 坏字符对应模式串中的下标是 j
 }
 if (j < 0) {
 return i; // 匹配成功，返回主串与模式串第一个匹配的字符的位置

 }
 int x = j - bc[(int)a[i+j]];
 int y = 0;
 if (j < m-1) { // 如果有好后缀的话

 y = moveByGS(j, m, suffix, prefix);
 }
 i = i + Math.max(x, y);
 }
 return -1;
}

// j 表示坏字符对应的模式串中的字符下标 ; m 表示模式串长度

private int moveByGS(int j, int m, int[] suffix, boolean[] prefix) {
 int k = m - 1 - j; // 好后缀长度

 if (suffix[k] != -1) return j - suffix[k] +1;
 for (int r = j+2; r <= m-1; ++r) {
 if (prefix[m-r] == true) {
 return r;
 }
 }
 return m;
}

不使用坏字符规则，这样就可以避免 bc 数组过多的内存消耗。不过，单纯使用好后缀规则

的 BM 算法效率就会下降一些了。

对于执行效率来说，我们可以先从时间复杂度的角度来分析。

实际上，我前面讲的 BM 算法是个初级版本。为了让你能更容易理解，有些复杂的优化我

没有讲。基于我目前讲的这个版本，在极端情况下，预处理计算 suffix 数组、prefix 数组

的性能会比较差。

比如模式串是 aaaaaaa 这种包含很多重复的字符的模式串，预处理的时间复杂度就是

O(m^2)。当然，大部分情况下，时间复杂度不会这么差。关于如何优化这种极端情况下的

时间复杂度退化，如果感兴趣，你可以自己研究一下。

实际上，BM 算法的时间复杂度分析起来是非常复杂，这篇论文“A new proof of the

linearity of the Boyer-Moore string searching algorithm”证明了在最坏情况下，BM

算法的比较次数上限是 5n。这篇论文“Tight bounds on the complexity of the Boyer-

Moore string matching algorithm”证明了在最坏情况下，BM 算法的比较次数上限是

3n。你可以自己阅读看看。

解答开篇 & 内容小结

今天，我们讲了一种比较复杂的字符串匹配算法，BM 算法。尽管复杂、难懂，但匹配的效

率却很高，在实际的软件开发中，特别是一些文本编辑器中，应用比较多。如果一遍看不懂

的话，你就多看几遍。

BM 算法核心思想是，利用模式串本身的特点，在模式串中某个字符与主串不能匹配的时

候，将模式串往后多滑动几位，以此来减少不必要的字符比较，提高匹配的效率。BM 算法

构建的规则有两类，坏字符规则和好后缀规则。好后缀规则可以独立于坏字符规则使用。因

为坏字符规则的实现比较耗内存，为了节省内存，我们可以只用好后缀规则来实现 BM 算

法。

课后思考

你熟悉的编程语言中的查找函数，或者工具、软件中的查找功能，都是用了哪种字符串匹配

算法呢？

http://dl.acm.org/citation.cfm?id=1382431.1382552
http://dl.acm.org/citation.cfm?id=127830

欢迎留言和我分享，也欢迎点击“请朋友读”，把今天的内容分享给你的好友，和他一起讨

论、学习。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 32 | 字符串匹配基础（上）：如何借助哈希算法实现高效字符串匹配？

下一篇 34 | 字符串匹配基础（下）：如何借助BM算法轻松理解KMP算法？

Smallfly
2018-12-08

 82

BM 算法分析着实比较复杂，不过按照老师的思路，一步一步走，看懂应该没问题的。但
其实有些代码实现细节看不懂关系也不大。我们学算法主要目的是学习算法的思想，能在
需要的时候加以应用就好。

但对于平时工作，几乎不可能遇到，需要自己手写一个字符串匹配算法的场景。那我们…
展开

作者回复: 👍

精选留言 (117)  写留言

meng
2018-12-09

 35

我对这次课的内容一知半解，于是在网上搜到一个文档，里面的图挺好的，跟大家分享一
下：http://www.cs.jhu.edu/~langmea/resources/lecture_notes/boyer_moore.pdf

展开

suke
2018-12-19

 18

老师以后的代码中的变量能不能起的有意义一些，这样更加方便大家理解代码啊，不要总
拿a b c bc这种完全没有意义的名字来命名变量

展开

纯洁的憎恶
2018-12-10

 16

大体思路应该是看懂了，不过具体实现和代码细节还需要时间消化。BM算法的核心思想是
通过将模式串沿着主串大踏步的向后滑动，从而大大减少比较次数，降低时间复杂度。而
算法的关键在于如何兼顾步子迈得足够大与无遗漏，同时要尽量提高执行效率。这就需要
模式串在向后滑动时，遵守坏字符规则与好后缀规则，同时采用一些技巧。
 …
展开

meng
2018-12-23

 14

这篇文章啃了很长时间了，有个问题请教：是否可以不要prefix数组，直接通过
suffix[k]==0来判断前缀子串的匹配与否？

展开

Jerry银银
2018-12-07

 11

曾经一度觉得字符串匹配的几大算法，都是高山仰止的，难以理解。

但是前阵子受两句话启发，从此以后对字符串匹配问题，至少在战略层面藐视了它：

1. 善用之前信息(从信息论的角度：消除信息的不确定性，就是引入信息)
 …
展开

Liam
2018-12-07

 10

好后缀原则下，最后一种情况为什么移到坏字符后面呢，不能移到好后缀的后面吗？即
m+1,而不是j + 1

作者回复: 你说的对 👍 我改下

五岳寻仙
2018-12-07

 8

老师好！今天讲的BM算法确实有点复杂，不过听的时候有熟悉的感觉，似乎跟之前接触过
的Boyer Moore算法很像，查了一下才发现原来是同一种算法😂

在工作中遇到过这样的情况，需要在一个长度为n (比如十亿级)的巨大的主串中查找长度为
m(比如几百)的模式串。主串是固定的，从直观上讲，要加快搜索速度，就需要对主串建…
展开

cygnus
2018-12-08

 5

generateGS函数里suffix和prefix的赋值应该放到while循环内，即每次k变动时都要赋
值。
另外请问下：好后缀的后缀子串 b[r, m-1]，这里的r的初值j+2是怎么得来的啊？

作者回复: j表示坏字符的下标 好狗追其实下标j+1

Ryoma
2018-12-13

 4

跟课程以来觉得最难的一次，也有可能之前使用手机看的原因。总体上，拿手机看了3次，
今天在电脑上看了第一次，终于将好后缀那部分理解清晰。学生时代接触的性能较高字符

串匹配算法就是KMP，个人感觉BM比KMP更难理解，大家如果有没理解的，还是要多多
看，或者拿着笔画一画

展开

Alan
2018-12-12

 4

在计算suffix 数组和 prefix 数组的代码中，第15行的i是不是多余的诶~？

传说中的成...
2018-12-10

 4

在用一个256的数组 用字符的ascii码做下标 记录该字符出现的位置 如果存在相同字符怎么
办呢？之前的会被新的覆盖掉的把！

展开

作者回复: 是的 就是要覆盖掉 留最大的

seniusen
2018-12-07

 4

好后缀原则中，最后一种情况，应该是移动 m 位吧，移动整个模式串的长度。

作者回复: 是的

P@tricK
2018-12-07

 4

老师，suffix和prefix的赋值那里有BUG，应该在每一次k的变动都要有suffix赋值。

作者回复: 是的 多谢

Liam
2018-12-07

 4

好后缀原则中，最后一种情况，为什么是移动j + 1 位，而不是m+1位

作者回复: 移动到坏字符后面 移动m+1位是怎么理解的呢

Fstar
2019-02-25

 3

。。。我知道为什么老师说 si-xi 可能是负数了。

虽然理论上应该是从 si 的位置往前找 xi。但代码实现为了提高效率，使用了哈希表，记录
的是不同字符在模式串中“最后出现的位置”，并不是 si 的位置往前查找的第一个位置，
所以确实会出现 xi 大于 si 的情况，原来如此原来如此。。。 …
展开

不凉青年
2018-12-21

 3

这块断断续续看了好几天- -

展开

Jamin
2018-12-11

 3

generateGS code第15行 没有写完吗？

展开

P@tricK
2018-12-08

 3

高票那个留言，是移动m位，不是m+1位。

这节课细节上小问题有点多，不过瑕不掩瑜，思想重要，细节自己钻研。

作者回复: 是的

nopsky2018-12-07 
3

讲shuffix的第一个图中shuffix[4] = -1，这个-1怎么来的，不能理解，能不能再讲一下

