
34 | 字符串匹配基础（下）：如何借助BM算法轻松理解KMP算法？
2018-12-10 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 12:03 大小 11.04M

上一节我们讲了 BM 算法，尽管它很复杂，也不好理解，但却是工程中非常常用的一种高

效字符串匹配算法。有统计说，它是最高效、最常用的字符串匹配算法。不过，在所有的字

符串匹配算法里，要说最知名的一种的话，那就非 KMP 算法莫属。很多时候，提到字符串

匹配，我们首先想到的就是 KMP 算法。

尽管在实际的开发中，我们几乎不大可能自己亲手实现一个 KMP 算法。但是，学习这个算

法的思想，作为让你开拓眼界、锻炼下逻辑思维，也是极好的，所以我觉得有必要拿出来给

你讲一讲。不过，KMP 算法是出了名的不好懂。我会尽力把它讲清楚，但是你自己也要多

动动脑子。

实际上，KMP 算法跟 BM 算法的本质是一样的。上一节，我们讲了好后缀和坏字符规则，

今天，我们就看下，如何借助上一节 BM 算法的讲解思路，让你能更好地理解 KMP 算





 下载APP 



法？

KMP 算法基本原理

KMP 算法是根据三位作者（D.E.Knuth，J.H.Morris 和 V.R.Pratt）的名字来命名的，算法

的全称是 Knuth Morris Pratt 算法，简称为 KMP 算法。

KMP 算法的核心思想，跟上一节讲的 BM 算法非常相近。我们假设主串是 a，模式串是

b。在模式串与主串匹配的过程中，当遇到不可匹配的字符的时候，我们希望找到一些规

律，可以将模式串往后多滑动几位，跳过那些肯定不会匹配的情况。

还记得我们上一节讲到的好后缀和坏字符吗？�这里我们可以类比一下，在模式串和主串匹

配的过程中，把不能匹配的那个字符仍然叫作坏字符，把已经匹配的那段字符串叫作好前

缀。

当遇到坏字符的时候，我们就要把模式串往后滑动，在滑动的过程中，只要模式串和好前缀

有上下重合，前面几个字符的比较，就相当于拿好前缀的后缀子串，跟模式串的前缀子串在

比较。这个比较的过程能否更高效了呢？可以不用一个字符一个字符地比较了吗？



KMP 算法就是在试图寻找一种规律：在模式串和主串匹配的过程中，当遇到坏字符后，对

于已经比对过的好前缀，能否找到一种规律，将模式串一次性滑动很多位？

我们只需要拿好前缀本身，在它的后缀子串中，查找最长的那个可以跟好前缀的前缀子串匹

配的。假设最长的可匹配的那部分前缀子串是{v}，长度是 k。我们把模式串一次性往后滑

动 j-k 位，相当于，每次遇到坏字符的时候，我们就把 j 更新为 k，i 不变，然后继续比

较。



为了表述起来方便，我把好前缀的所有后缀子串中，最长的可匹配前缀子串的那个后缀子

串，叫作最长可匹配后缀子串；对应的前缀子串，叫作最长可匹配前缀子串。



如何来求好前缀的最长可匹配前缀和后缀子串呢？我发现，这个问题其实不涉及主串，只需

要通过模式串本身就能求解。所以，我就在想，能不能事先预处理计算好，在模式串和主串

匹配的过程中，直接拿过来就用呢？

类似 BM 算法中的 bc、suffix、prefix 数组，KMP 算法也可以提前构建一个数组，用来存

储模式串中每个前缀（这些前缀都有可能是好前缀）的最长可匹配前缀子串的结尾字符下

标。我们把这个数组定义为next 数组，很多书中还给这个数组起了一个名字，叫失效函数

（failure function）。

数组的下标是每个前缀结尾字符下标，数组的值是这个前缀的最长可以匹配前缀子串的结尾

字符下标。这句话有点拗口，我举了一个例子，你一看应该就懂了。



有了 next 数组，我们很容易就可以实现 KMP 算法了。我先假设 next 数组已经计算好

了，先给出 KMP 算法的框架代码。

失效函数计算方法

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// a, b 分别是主串和模式串；n, m 分别是主串和模式串的长度。

public static int kmp(char[] a, int n, char[] b, int m) {
  int[] next = getNexts(b, m);
  int j = 0;
  for (int i = 0; i < n; ++i) {
    while (j > 0 && a[i] != b[j]) { // 一直找到 a[i] 和 b[j]
      j = next[j - 1] + 1;
    }
    if (a[i] == b[j]) {
      ++j;
    }
    if (j == m) { // 找到匹配模式串的了

      return i - m + 1;
    }
  }
  return -1;
}

复制代码



KMP 算法的基本原理讲完了，我们现在来看最复杂的部分，也就是 next 数组是如何计算

出来的？

当然，我们可以用非常笨的方法，比如要计算下面这个模式串 b 的 next[4]，我们就把 b[0,

4] 的所有后缀子串，从长到短找出来，依次看看，是否能跟模式串的前缀子串匹配。很显

然，这个方法也可以计算得到 next 数组，但是效率非常低。有没有更加高效的方法呢？

这里的处理非常有技巧，类似于动态规划。不过，动态规划我们在后面才会讲到，所以，我

这里换种方法解释，也能让你听懂。

我们按照下标从小到大，依次计算 next 数组的值。当我们要计算 next[i] 的时候，前面的

next[0]，next[1]，……，next[i-1] 应该已经计算出来了。利用已经计算出来的 next 值，

我们是否可以快速推导出 next[i] 的值呢？

如果 next[i-1]=k-1，也就是说，子串 b[0, k-1] 是 b[0, i-1] 的最长可匹配前缀子串。如果

子串 b[0, k-1] 的下一个字符 b[k]，与 b[0, i-1] 的下一个字符 b[i] 匹配，那子串 b[0, k] 就

是 b[0, i] 的最长可匹配前缀子串。所以，next[i] 等于 k。但是，如果 b[0, k-1] 的下一字

符 b[k] 跟 b[0, i-1] 的下一个字符 b[i] 不相等呢？这个时候就不能简单地通过 next[i-1] 得

到 next[i] 了。这个时候该怎么办呢？



我们假设 b[0, i] 的最长可匹配后缀子串是 b[r, i]。如果我们把最后一个字符去掉，那 b[r, i-

1] 肯定是 b[0, i-1] 的可匹配后缀子串，但不一定是最长可匹配后缀子串。所以，既然 b[0,

i-1] 最长可匹配后缀子串对应的模式串的前缀子串的下一个字符并不等于 b[i]，那么我们就

可以考察 b[0, i-1] 的次长可匹配后缀子串 b[x, i-1] 对应的可匹配前缀子串 b[0, i-1-x] 的下

一个字符 b[i-x] 是否等于 b[i]。如果等于，那 b[x, i] 就是 b[0, i] 的最长可匹配后缀子串。

可是，如何求得 b[0, i-1] 的次长可匹配后缀子串呢？次长可匹配后缀子串肯定被包含在最

长可匹配后缀子串中，而最长可匹配后缀子串又对应最长可匹配前缀子串 b[0, y]。于是，

查找 b[0, i-1] 的次长可匹配后缀子串，这个问题就变成，查找 b[0, y] 的最长匹配后缀子串

的问题了。



按照这个思路，我们可以考察完所有的 b[0, i-1] 的可匹配后缀子串 b[y, i-1]，直到找到一

个可匹配的后缀子串，它对应的前缀子串的下一个字符等于 b[i]，那这个 b[y, i] 就是 b[0,

i] 的最长可匹配后缀子串。

前面我已经给出 KMP 算法的框架代码了，现在我把这部分的代码也写出来了。这两部分代

码合在一起，就是整个 KMP 算法的代码实现。

KMP 算法复杂度分析

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

// b 表示模式串，m 表示模式串的长度

private static int[] getNexts(char[] b, int m) {
  int[] next = new int[m];
  next[0] = -1;
  int k = -1;
  for (int i = 1; i < m; ++i) {
    while (k != -1 && b[k + 1] != b[i]) {
      k = next[k];
    }
    if (b[k + 1] == b[i]) {
      ++k;
    }
    next[i] = k;
  }
  return next;
}

复制代码



KMP 算法的原理和实现我们就讲完了，我们现在来分析一下 KMP 算法的时间、空间复杂

度是多少？

空间复杂度很容易分析，KMP 算法只需要一个额外的 next 数组，数组的大小跟模式串相

同。所以空间复杂度是 O(m)，m 表示模式串的长度。

KMP 算法包含两部分，第一部分是构建 next 数组，第二部分才是借助 next 数组匹配。所

以，关于时间复杂度，我们要分别从这两部分来分析。

我们先来分析第一部分的时间复杂度。

计算 next 数组的代码中，第一层 for 循环中 i 从 1 到 m-1，也就是说，内部的代码被执行

了 m-1 次。for 循环内部代码有一个 while 循环，如果我们能知道每次 for 循环、while

循环平均执行的次数，假设是 k，那时间复杂度就是 O(k*m)。但是，while 循环执行的次

数不怎么好统计，所以我们放弃这种分析方法。

我们可以找一些参照变量，i 和 k。i 从 1 开始一直增加到 m，而 k 并不是每次 for 循环都

会增加，所以，k 累积增加的值肯定小于 m。而 while 循环里 k=next[k]，实际上是在减

小 k 的值，k 累积都没有增加超过 m，所以 while 循环里面 k=next[k] 总的执行次数也不

可能超过 m。因此，next 数组计算的时间复杂度是 O(m)。

我们再来分析第二部分的时间复杂度。分析的方法是类似的。

i 从 0 循环增长到 n-1，j 的增长量不可能超过 i，所以肯定小于 n。而 while 循环中的那条

语句 j=next[j-1]+1，不会让 j 增长的，那有没有可能让 j 不变呢？也没有可能。因为

next[j-1] 的值肯定小于 j-1，所以 while 循环中的这条语句实际上也是在让 j 的值减少。而

j 总共增长的量都不会超过 n，那减少的量也不可能超过 n，所以 while 循环中的这条语句

总的执行次数也不会超过 n，所以这部分的时间复杂度是 O(n)。

所以，综合两部分的时间复杂度，KMP 算法的时间复杂度就是 O(m+n)。

解答开篇 & 内容小结

KMP 算法讲完了，不知道你理解了没有？如果没有，建议多看几遍，自己多思考思考。

KMP 算法和上一节讲的 BM 算法的本质非常类似，都是根据规律在遇到坏字符的时候，把

模式串往后多滑动几位。



BM 算法有两个规则，坏字符和好后缀。KMP 算法借鉴 BM 算法的思想，可以总结成好前

缀规则。这里面最难懂的就是 next 数组的计算。如果用最笨的方法来计算，确实不难，但

是效率会比较低。所以，我讲了一种类似动态规划的方法，按照下标 i 从小到大，依次计算

next[i]，并且 next[i] 的计算通过前面已经计算出来的 next[0]，next[1]，……，next[i-1]

来推导。

KMP 算法的时间复杂度是 O(n+m)，不过它的分析过程稍微需要一点技巧，不那么直观，

你只要看懂就好了，并不需要掌握，在我们平常的开发中，很少会有这么难分析的代码。

课后思考

至此，我们把经典的单模式串匹配算法全部讲完了，它们分别是 BF 算法、RK 算法、BM

算法和 KMP 算法，关于这些算法，你觉得什么地方最难理解呢？

欢迎留言和我分享，也欢迎点击“请朋友读”，把今天的内容分享给你的好友，和他一起讨

论、学习。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 33 | 字符串匹配基础（中）：如何实现文本编辑器中的查找功能？

下 篇 35 | T i 树 如何实现搜索引擎的搜索关键词提示功能？



下一篇 35 | Trie树：如何实现搜索引擎的搜索关键词提示功能？

ZX
2018-12-16

 57

最难理解的地方是 
k = next[k] 
因为前一个的最长串的下一个字符不与最后一个相等，需要找前一个的次长串，问题就变
成了求0到next(k)的最长串，如果下个字符与最后一个不等，继续求次长串，也就是下一
个next(k)，直到找到，或者完全没有 

展开

作者回复: 你掌握了精髓

他在她城断...
2018-12-15

 19

关于求next数组这部分写的太不好懂了，建议作者别用太多长句，切换成短句，方便大家
理解。。

slvher
2018-12-19

 16

「我们假设 b[0, i] 的最长可匹配后缀子串是 b[r, i]。如果我们把最后一个字符去掉，那
b[r, i-1] 肯定是 b[0, i-1] 的可匹配后缀子串，但不一定是最长可匹配后缀子串。」 
 
========= 手动分割线 ======== 
 …
展开

Smallfly
2018-12-11

 16

「那 b[r, i-1] 肯定是 b[0, i-1] 的可匹配后缀子串，但并不一定是最长可匹配后缀子串。」
后半句不是很理解，如果模式串是 b[0, i-1]，i-1 已经是最后一个字符了，那么为什么 b[r,
i-1] 不一定是 b[0, i-1] 的最长可匹配后缀子串呢？ 

精选留言 (88)  写留言



展开

Niulx
2018-12-16

 11

我觉得bm算法倒是好理解但是kmp的算法的next数组我感觉不太好理解啊

feifei
2018-12-14

 9

一个双休，加上好几个早上的时间，这两篇关于字符串匹配，弄明白了，代码我自己也实
现了一遍，就论代码实现来说，KMP算法比BM算法要简单一点，这个BM算法，一个双休
送给了他，慢慢的一点点理解规则，然后再一点点的，按照自己所理解的思想来实现，虽
然觉得这样子慢，但能学到的会更多，要论最难理解的地方，这个ＢＭ的算法的计算next
数组，这脑子绕了好久！

展开

作者回复: 我写的时候也绕了好久

Alpha.
2019-01-19

 8

推荐读者先去看下这篇文章，然后再来看看，理解next会比较有帮助。 
https://www.zhihu.com/question/21923021，逍遥行 的回答

不上进的码...
2018-12-10

 5

厉害厉害，这个算法的精髓是不是就是求next数组啊，还有BM算法中的应该也是求那两个
数组。我觉着应该理一理这两种求数组的过程，这求数组的过程是不是也是一个特别好的
算法呀！

P@tricK
2018-12-10

 5

如果 next[i-1]=k-1，也就是说，子串 b[0, k-1] 是 b[0, i-1] 的最长可匹配前缀子串。如果
子串 b[0, k-1] 的下一个字符 b[k]，与 b[0, i-1] 的下一个字符 b[i] 匹配，那子串 b[0, k] 就



是 b[0, i] 的最长可匹配前缀子串。所以，next[i-1] 等于 k。 
 
--------------- …
展开

作者回复: 嗯嗯 多谢指正

煦暖
2018-12-10

 4

老师你好，第二幅图的上半部分的模式串前缀子串画错了，应该从a开始，abab，而不是
baba。

作者回复: 嗯嗯 多谢指正

luo
2019-01-10

 3

3遍才理解了差不多，还有一句话之前留言的还是木有理解，BM是去滑动主串，KMP是利
用模式串的好前缀规则去跳过模式串（相当于滑动模式串）主串递增的形式。最难理解的
就是next数组中的求解，如果b[0,i-1]的最长前缀是k-1 那b[0,k-1]就是最长的前缀 这里开
始分两种情况， 
第一种情况：b[0,k-1]的下一个字符b[k]=b[i],则最长前缀子串就变成b[0,k]，最长后缀就…
展开

李
2018-12-14

 3

终于看明白了，感觉设置了很多干扰项。其实用迭代思想解释就能理解了。 
这个算法本质是找相等的最长匹配前缀和最长匹配后缀。 
有两种情况， 
（1）如果b[i-1]的最长前缀下一个字符与b[i]相等，则next[i]=next[i-1]+1. 
（2）如果不相等，则我们假设找到b[i-1]的最长前缀里有b[0,y]与后缀的子串b[z,i-1]相…
展开

李  3



2018-12-14

百度了下，终于搞明白了，回答自己前面一个问题。 
关键是要搞明白k值是啥东西。 
比如求aba 每个前缀最长可匹配前缀子串的结尾字符下标 
这句话很容易引起歧义。 
aba的前缀有a,ab, 后缀有ba,a 只有a与a匹配。 所以匹配的结尾下标是0. …
展开

作者回复: 👍

Stephen
2018-12-13

 3

看了好几天，终于搞懂了

展开

P@tricK
2018-12-10

 3

最难理解的就是kmp的next数组的这个求法了，思路本身就难，几个边界情况靠自己理清
写出来没BUG更是难。 
自己想到的一个简单点的解法，就是先将所有模式串的前缀子串全列出来，然后用哈希表
存储，key是串，value是串长度，求解next数组值的时候将后缀子串从长到短去哈希表里
找。

展开

作者回复: 👍 人才啊 不过时间复杂度就高了 后缀字串是模式串前缀的后缀子串 并不是模式串的

后缀子串

饺子
2019-02-25

 2

😂😂😂讲移动那幅图是不是写错了 j=j-k 
不应该是j=k嘛

Flash  2



2019-02-16

 
最难理解的是KMP算法了。 
总体上，KMP算法是借鉴了BM算法本质思想的，都是遇到坏字符的时候，把模式串往后
多滑动几位。 
1.但是这里要注意一个细节，不然容易被前面学的BM算法给误导，导致难以理解。 …
展开

Kevin
2018-12-27

 2

时间复杂度那个while增长量是怎么推敲出整体小于m或者n的，有点不大理解

李
2018-12-14

 2

那 b[r, i-1] 肯定是 b[0, i-1] 的可匹配后缀子串，但并不一定是最长可匹配后缀子串。 
我研究了一会，这句话有误，建议更正。这里应该说一定就是最长可匹配字符串。 
假设不是最长的，那b[r-1]就应该有匹配相等的，这显然矛盾

展开

walor
2018-12-10

 2

可是，如何求得 b[0, i-1] 的次长可匹配后缀子串呢？次长可匹配后缀子串肯定被包含在最
长可匹配后缀子串中，而最长可匹配后缀子串又对应最长可匹配前缀子串 b[0, y]。于是，
查找 b[0, i-1] 的次长可匹配后缀子串，这个问题就变成，查找 b[0, y] 的最长匹配后缀子
串的问题了。 
 …
展开


