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淘宝的“双十一”购物节有各种促销活动，比如“满 200 元减 50 元”。假设你女朋友的

购物车中有 n 个（n>100）想买的商品，她希望从里面选几个，在凑够满减条件的前提

下，让选出来的商品价格总和最大程度地接近满减条件（200 元），这样就可以极大限度

地“薅羊毛”。作为程序员的你，能不能编个代码来帮她搞定呢？

要想高效地解决这个问题，就要用到我们今天讲的动态规划（Dynamic

Programming）。

动态规划学习路线

动态规划比较适合用来求解最优问题，比如求最大值、最小值等等。它可以非常显著地降低

时间复杂度，提高代码的执行效率。不过，它也是出了名的难学。它的主要学习难点跟递归
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类似，那就是，求解问题的过程不太符合人类常规的思维方式。对于新手来说，要想入门确

实不容易。不过，等你掌握了之后，你会发现，实际上并没有想象中那么难。

为了让你更容易理解动态规划，我分了三节给你讲解。这三节分别是，初识动态规划、动态

规划理论、动态规划实战。

第一节，我会通过两个非常经典的动态规划问题模型，向你展示我们为什么需要动态规划，

以及动态规划解题方法是如何演化出来的。实际上，你只要掌握了这两个例子的解决思路，

对于其他很多动态规划问题，你都可以套用类似的思路来解决。

第二节，我会总结动态规划适合解决的问题的特征，以及动态规划解题思路。除此之外，我

还会将贪心、分治、回溯、动态规划这四种算法思想放在一起，对比分析它们各自的特点以

及适用的场景。

第三节，我会教你应用第二节讲的动态规划理论知识，实战解决三个非常经典的动态规划问

题，加深你对理论的理解。弄懂了这三节中的例子，对于动态规划这个知识点，你就算是入

门了。

0-1 背包问题

我在讲贪心算法、回溯算法的时候，多次讲到背包问题。今天，我们依旧拿这个问题来举

例。

对于一组不同重量、不可分割的物品，我们需要选择一些装入背包，在满足背包最大重量限

制的前提下，背包中物品总重量的最大值是多少呢？

关于这个问题，我们上一节讲了回溯的解决方法，也就是穷举搜索所有可能的装法，然后找

出满足条件的最大值。不过，回溯算法的复杂度比较高，是指数级别的。那有没有什么规

律，可以有效降低时间复杂度呢？我们一起来看看。
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// 回溯算法实现。注意：我把输入的变量都定义成了成员变量。

private int maxW = Integer.MIN_VALUE; // 结果放到 maxW 中
private int[] weight = {2，2，4，6，3};  // 物品重量

private int n = 5; // 物品个数

private int w = 9; // 背包承受的最大重量

public void f(int i, int cw) { // 调用 f(0, 0)
  if (cw == w || i == n) { // cw==w 表示装满了，i==n 表示物品都考察完了
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规律是不是不好找？那我们就举个例子、画个图看看。我们假设背包的最大承载重量是 9。

我们有 5 个不同的物品，每个物品的重量分别是 2，2，4，6，3。如果我们把这个例子的

回溯求解过程，用递归树画出来，就是下面这个样子：

递归树中的每个节点表示一种状态，我们用（i, cw）来表示。其中，i 表示将要决策第几个

物品是否装入背包，cw 表示当前背包中物品的总重量。比如，（2，2）表示我们将要决策

第 2 个物品是否装入背包，在决策前，背包中物品的总重量是 2。

从递归树中，你应该能会发现，有些子问题的求解是重复的，比如图中 f(2, 2) 和 f(3,4) 都

被重复计算了两次。我们可以借助递归那一节讲的“备忘录”的解决方式，记录已经计算好
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    if (cw > maxW) maxW = cw;
    return;
  }
  f(i+1, cw); // 选择不装第 i 个物品

  if (cw + weight[i] <= w) {
    f(i+1,cw + weight[i]); // 选择装第 i 个物品

  }
}
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的 f(i, cw)，当再次计算到重复的 f(i, cw) 的时候，可以直接从备忘录中取出来用，就不用

再递归计算了，这样就可以避免冗余计算。

这种解决方法非常好。实际上，它已经跟动态规划的执行效率基本上没有差别。但是，多一

种方法就多一种解决思路，我们现在来看看动态规划是怎么做的。

我们把整个求解过程分为 n 个阶段，每个阶段会决策一个物品是否放到背包中。每个物品

决策（放入或者不放入背包）完之后，背包中的物品的重量会有多种情况，也就是说，会达

到多种不同的状态，对应到递归树中，就是有很多不同的节点。

我们把每一层重复的状态（节点）合并，只记录不同的状态，然后基于上一层的状态集合，

来推导下一层的状态集合。我们可以通过合并每一层重复的状态，这样就保证每一层不同状

态的个数都不会超过 w 个（w 表示背包的承载重量），也就是例子中的 9。于是，我们就

成功避免了每层状态个数的指数级增长。

我们用一个二维数组 states[n][w+1]，来记录每层可以达到的不同状态。

第 0 个（下标从 0 开始编号）物品的重量是 2，要么装入背包，要么不装入背包，决策完

之后，会对应背包的两种状态，背包中物品的总重量是 0 或者 2。我们用 states[0]

[0]=true 和 states[0][2]=true 来表示这两种状态。
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private int maxW = Integer.MIN_VALUE; // 结果放到 maxW 中
private int[] weight = {2，2，4，6，3};  // 物品重量

private int n = 5; // 物品个数

private int w = 9; // 背包承受的最大重量

private boolean[][] mem = new boolean[5][10]; // 备忘录，默认值 false
public void f(int i, int cw) { // 调用 f(0, 0)
  if (cw == w || i == n) { // cw==w 表示装满了，i==n 表示物品都考察完了

    if (cw > maxW) maxW = cw;
    return;
  }
  if (mem[i][cw]) return; // 重复状态

  mem[i][cw] = true; // 记录 (i, cw) 这个状态

  f(i+1, cw); // 选择不装第 i 个物品

  if (cw + weight[i] <= w) {
    f(i+1,cw + weight[i]); // 选择装第 i 个物品

  }
}
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第 1 个物品的重量也是 2，基于之前的背包状态，在这个物品决策完之后，不同的状态有 3

个，背包中物品总重量分别是 0(0+0)，2(0+2 or 2+0)，4(2+2)。我们用 states[1]

[0]=true，states[1][2]=true，states[1][4]=true 来表示这三种状态。

以此类推，直到考察完所有的物品后，整个 states 状态数组就都计算好了。我把整个计算

的过程画了出来，你可以看看。图中 0 表示 false，1 表示 true。我们只需要在最后一层，

找一个值为 true 的最接近 w（这里是 9）的值，就是背包中物品总重量的最大值。

文字描述可能还不够清楚。我把上面的过程，翻译成代码，你可以结合着一块看下。
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实际上，这就是一种用动态规划解决问题的思路。我们把问题分解为多个阶段，每个阶段对

应一个决策。我们记录每一个阶段可达的状态集合（去掉重复的），然后通过当前阶段的状

态集合，来推导下一个阶段的状态集合，动态地往前推进。这也是动态规划这个名字的由

来，你可以自己体会一下，是不是还挺形象的？

前面我们讲到，用回溯算法解决这个问题的时间复杂度 O(2^n)，是指数级的。那动态规划

解决方案的时间复杂度是多少呢？我来分析一下。

这个代码的时间复杂度非常好分析，耗时最多的部分就是代码中的两层 for 循环，所以时间

复杂度是 O(n*w)。n 表示物品个数，w 表示背包可以承载的总重量。

从理论上讲，指数级的时间复杂度肯定要比 O(n*w) 高很多，但是为了让你有更加深刻的感

受，我来举一个例子给你比较一下。

我们假设有 10000 个物品，重量分布在 1 到 15000 之间，背包可以承载的总重量是

30000。如果我们用回溯算法解决，用具体的数值表示出时间复杂度，就是 2^10000，这

是一个相当大的一个数字。如果我们用动态规划解决，用具体的数值表示出时间复杂度，就

是 10000*30000。虽然看起来也很大，但是和 2^10000 比起来，要小太多了。
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weight: 物品重量，n: 物品个数，w: 背包可承载重量

public int knapsack(int[] weight, int n, int w) {
  boolean[][] states = new boolean[n][w+1]; // 默认值 false
  states[0][0] = true;  // 第一行的数据要特殊处理，可以利用哨兵优化

  states[0][weight[0]] = true;
  for (int i = 1; i < n; ++i) { // 动态规划状态转移

    for (int j = 0; j <= w; ++j) {// 不把第 i 个物品放入背包

      if (states[i-1][j] == true) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= w-weight[i]; ++j) {// 把第 i 个物品放入背包

      if (states[i-1][j]==true) states[i][j+weight[i]] = true;
    }
  }
  for (int i = w; i >= 0; --i) { // 输出结果

    if (states[n-1][i] == true) return i;
  }
  return 0;
}



尽管动态规划的执行效率比较高，但是就刚刚的代码实现来说，我们需要额外申请一个 n

乘以 w+1 的二维数组，对空间的消耗比较多。所以，有时候，我们会说，动态规划是一种

空间换时间的解决思路。你可能要问了，有什么办法可以降低空间消耗吗？

实际上，我们只需要一个大小为 w+1 的一维数组就可以解决这个问题。动态规划状态转移

的过程，都可以基于这个一维数组来操作。具体的代码实现我贴在这里，你可以仔细看下。

这里我特别强调一下代码中的第 6 行，j 需要从大到小来处理。如果我们按照 j 从小到大处

理的话，会出现 for 循环重复计算的问题。你可以自己想一想，这里我就不详细说了。

0-1 背包问题升级版

我们继续升级难度。我改造了一下刚刚的背包问题。你看这个问题又该如何用动态规划解

决？

我们刚刚讲的背包问题，只涉及背包重量和物品重量。我们现在引入物品价值这一变量。对

于一组不同重量、不同价值、不可分割的物品，我们选择将某些物品装入背包，在满足背包

最大重量限制的前提下，背包中可装入物品的总价值最大是多少呢？

这个问题依旧可以用回溯算法来解决。这个问题并不复杂，所以具体的实现思路，我就不用

文字描述了，直接给你看代码。
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public static int knapsack2(int[] items, int n, int w) {
  boolean[] states = new boolean[w+1]; // 默认值 false
  states[0] = true;  // 第一行的数据要特殊处理，可以利用哨兵优化

  states[items[0]] = true;
  for (int i = 1; i < n; ++i) { // 动态规划

    for (int j = w-items[i]; j >= 0; --j) {// 把第 i 个物品放入背包

      if (states[j]==true) states[j+items[i]] = true;
    }
  }
  for (int i = w; i >= 0; --i) { // 输出结果

    if (states[i] == true) return i;
  }
  return 0;
}
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针对上面的代码，我们还是照例画出递归树。在递归树中，每个节点表示一个状态。现在我

们需要 3 个变量（i, cw, cv）来表示一个状态。其中，i 表示即将要决策第 i 个物品是否装

入背包，cw 表示当前背包中物品的总重量，cv 表示当前背包中物品的总价值。

我们发现，在递归树中，有几个节点的 i 和 cw 是完全相同的，比如 f(2,2,4) 和 f(2,2,3)。

在背包中物品总重量一样的情况下，f(2,2,4) 这种状态对应的物品总价值更大，我们可以舍
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private int maxV = Integer.MIN_VALUE; // 结果放到 maxV 中
private int[] items = {2，2，4，6，3};  // 物品的重量

private int[] value = {3，4，8，9，6}; // 物品的价值

private int n = 5; // 物品个数

private int w = 9; // 背包承受的最大重量

public void f(int i, int cw, int cv) { // 调用 f(0, 0, 0)
  if (cw == w || i == n) { // cw==w 表示装满了，i==n 表示物品都考察完了

    if (cv > maxV) maxV = cv;
    return;
  }
  f(i+1, cw, cv); // 选择不装第 i 个物品

  if (cw + weight[i] <= w) {
    f(i+1,cw+weight[i], cv+value[i]); // 选择装第 i 个物品

  }
}
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弃 f(2,2,3) 这种状态，只需要沿着 f(2,2,4) 这条决策路线继续往下决策就可以。

也就是说，对于 (i, cw) 相同的不同状态，那我们只需要保留 cv 值最大的那个，继续递归处

理，其他状态不予考虑。

思路说完了，但是代码如何实现呢？如果用回溯算法，这个问题就没法再用“备忘录”解决

了。所以，我们就需要换一种思路，看看动态规划是不是更容易解决这个问题？

我们还是把整个求解过程分为 n 个阶段，每个阶段会决策一个物品是否放到背包中。每个

阶段决策完之后，背包中的物品的总重量以及总价值，会有多种情况，也就是会达到多种不

同的状态。

我们用一个二维数组 states[n][w+1]，来记录每层可以达到的不同状态。不过这里数组存

储的值不再是 boolean 类型的了，而是当前状态对应的最大总价值。我们把每一层中 (i,

cw) 重复的状态（节点）合并，只记录 cv 值最大的那个状态，然后基于这些状态来推导下

一层的状态。

我们把这个动态规划的过程翻译成代码，就是下面这个样子：
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public static int knapsack3(int[] weight, int[] value, int n, int w) {
  int[][] states = new int[n][w+1];
  for (int i = 0; i < n; ++i) { // 初始化 states
    for (int j = 0; j < w+1; ++j) {
      states[i][j] = -1;
    }
  }
  states[0][0] = 0;
  states[0][weight[0]] = value[0];
  for (int i = 1; i < n; ++i) { // 动态规划，状态转移

    for (int j = 0; j <= w; ++j) { // 不选择第 i 个物品

      if (states[i-1][j] >= 0) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= w-weight[i]; ++j) { // 选择第 i 个物品

      if (states[i-1][j] >= 0) {
        int v = states[i-1][j] + value[i];
        if (v > states[i][j+weight[i]]) {
          states[i][j+weight[i]] = v;
        }
      }
    }
  }
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关于这个问题的时间、空间复杂度的分析，跟上一个例子大同小异，所以我就不赘述了。我

直接给出答案，时间复杂度是 O(n*w)，空间复杂度也是 O(n*w)。跟上一个例子类似，空

间复杂度也是可以优化的，你可以自己写一下。

解答开篇

掌握了今天讲的两个问题之后，你是不是觉得，开篇的问题很简单？

对于这个问题，你当然可以利用回溯算法，穷举所有的排列组合，看大于等于 200 并且最

接近 200 的组合是哪一个？但是，这样效率太低了点，时间复杂度非常高，是指数级的。

当 n 很大的时候，可能“双十一”已经结束了，你的代码还没有运行出结果，这显然会让

你在女朋友心中的形象大大减分。

实际上，它跟第一个例子中讲的 0-1 背包问题很像，只不过是把“重量”换成了“价

格”而已。购物车中有 n 个商品。我们针对每个商品都决策是否购买。每次决策之后，对

应不同的状态集合。我们还是用一个二维数组 states[n][x]，来记录每次决策之后所有可达

的状态。不过，这里的 x 值是多少呢？

0-1 背包问题中，我们找的是小于等于 w 的最大值，x 就是背包的最大承载重量 w+1。对

于这个问题来说，我们要找的是大于等于 200（满减条件）的值中最小的，所以就不能设

置为 200 加 1 了。就这个实际的问题而言，如果要购买的物品的总价格超过 200 太多，比

如 1000，那这个羊毛“薅”得就没有太大意义了。所以，我们可以限定 x 值为 1001。

不过，这个问题不仅要求大于等于 200 的总价格中的最小的，我们还要找出这个最小总价

格对应都要购买哪些商品。实际上，我们可以利用 states 数组，倒推出这个被选择的商品

序列。我先把代码写出来，待会再照着代码给你解释。
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  // 找出最大值

  int maxvalue = -1;
  for (int j = 0; j <= w; ++j) {
    if (states[n-1][j] > maxvalue) maxvalue = states[n-1][j];
  }
  return maxvalue;
}
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代码的前半部分跟 0-1 背包问题没有什么不同，我们着重看后半部分，看它是如何打印出

选择购买哪些商品的。

状态 (i, j) 只有可能从 (i-1, j) 或者 (i-1, j-value[i]) 两个状态推导过来。所以，我们就检查这

两个状态是否是可达的，也就是 states[i-1][j] 或者 states[i-1][j-value[i]] 是否是 true。

如果 states[i-1][j] 可达，就说明我们没有选择购买第 i 个商品，如果 states[i-1][j-value[i]]

可达，那就说明我们选择了购买第 i 个商品。我们从中选择一个可达的状态（如果两个都可

达，就随意选择一个），然后，继续迭代地考察其他商品是否有选择购买。

内容小结

动态规划的第一节到此就讲完了。内容比较多，你可能需要多一点时间来消化。为了帮助你

有的放矢地学习，我来强调一下，今天你应该掌握的重点内容。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

// items 商品价格，n 商品个数, w 表示满减条件，比如 200
public static void double11advance(int[] items, int n, int w) {
  boolean[][] states = new boolean[n][3*w+1];// 超过 3 倍就没有薅羊毛的价值了

  states[0][0] = true;  // 第一行的数据要特殊处理

  states[0][items[0]] = true;
  for (int i = 1; i < n; ++i) { // 动态规划

    for (int j = 0; j <= 3*w; ++j) {// 不购买第 i 个商品

      if (states[i-1][j] == true) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= 3*w-items[i]; ++j) {// 购买第 i 个商品

      if (states[i-1][j]==true) states[i][j+items[i]] = true;
    }
  }
 
  int j;
  for (j = w; j < 3*w+1; ++j) { 
    if (states[n-1][j] == true) break; // 输出结果大于等于 w 的最小值

  }
  if (j == 3*w+1) return; // 没有可行解

  for (int i = n-1; i >= 1; --i) { // i 表示二维数组中的行，j 表示列

    if(j-items[i] >= 0 && states[i-1][j-items[i]] == true) {
      System.out.print(items[i] + " "); // 购买这个商品

      j = j - items[i];
    } // else 没有购买这个商品，j 不变。

  }
  if (j != 0) System.out.print(items[0]);
}



今天的内容不涉及动态规划的理论，我通过两个例子，给你展示了动态规划是如何解决问题

的，并且一点一点详细给你讲解了动态规划解决问题的思路。这两个例子都是非常经典的动

态规划问题，只要你真正搞懂这两个问题，基本上动态规划已经入门一半了。所以，你要多

花点时间，真正弄懂这两个问题。

从例子中，你应该能发现，大部分动态规划能解决的问题，都可以通过回溯算法来解决，只

不过回溯算法解决起来效率比较低，时间复杂度是指数级的。动态规划算法，在执行效率方

面，要高很多。尽管执行效率提高了，但是动态规划的空间复杂度也提高了，所以，很多时

候，我们会说，动态规划是一种空间换时间的算法思想。

我前面也说了，今天的内容并不涉及理论的知识。这两个例子的分析过程，我并没有涉及任

何高深的理论方面的东西。而且，我个人觉得，贪心、分治、回溯、动态规划，这四个算法

思想有关的理论知识，大部分都是“后验性”的，也就是说，在解决问题的过程中，我们往

往是先想到如何用某个算法思想解决问题，然后才用算法理论知识，去验证这个算法思想解

决问题的正确性。所以，你大可不必过于急于寻求动态规划的理论知识。

课后思考

“杨辉三角”不知道你听说过吗？我们现在对它进行一些改造。每个位置的数字可以随意填

写，经过某个数字只能到达下面一层相邻的两个数字。

假设你站在第一层，往下移动，我们把移动到最底层所经过的所有数字之和，定义为路径的

长度。请你编程求出从最高层移动到最底层的最短路径长度。



欢迎留言和我分享，也欢迎点击“请朋友读”，把今天的内容分享给你的好友，和他一起讨

论、学习。
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上一篇 39 | 回溯算法：从电影《蝴蝶效应》中学习回溯算法的核心思想

下一篇 不定期福利第四期 | 刘超：我是怎么学习《数据结构与算法之美》的？

zixuan
2018-12-30

 136

贪心：一条路走到黑，就一次机会，只能哪边看着顺眼走哪边 
回溯：一条路走到黑，无数次重来的机会，还怕我走不出来 (Snapshot View) 
动态规划：拥有上帝视角，手握无数平行宇宙的历史存档， 同时发展出无数个未来
(Versioned Archive View)

展开

精选留言 (99)  写留言



茴香根
2018-12-26 

28

我理解的动态规划，就是从全遍历的递归树为出发点，广度优先遍历，在遍历完每一层之
后对每层结果进行合并（结果相同的）或舍弃（已经超出限制条件的），确保下一层遍历
的数量不会超过限定条件数完W，通过这个操作达到大大减少不必要遍历的目的。 
在空间复杂度优化上，通过在计算中只保留最优结果的目的重复利用内存空间。

展开

🌀🐑hf...
2018-12-26

 28

首先得有个女朋友

展开

郭霖
2019-01-02

 23

王争老师动态规划讲得确实精彩，就是课后练习没有答案，有时候解不出来会很难受。我
是看了下一篇文章的讲解然后明白了这篇文章的课后习题解法，这里分享一下吧，希望对
大家有帮助。 
 
int[][] matrix = {{5},{7,8},{2,3,4},{4,9,6,1},{2,7,9,4,5}}; …
展开

煦暖
2018-12-28

 12

老师你好，您在专栏里提到好几次哨兵，啥时候给我们讲解一下呢？

Monday
2018-12-28

 9

1、这里我特别强调一下代码中的第 6 行，j 需要从大到小来处理。 
这里自己写代码调试完才恍然大悟，第i轮循环中新设置的值会干扰到后面的设值。 
 
2、特别感谢争哥今天让其他的课程的老师来客串了一节课，让我有了更多的时间学习本
节。 

展开

作者回复: 不着急你慢慢学就是了 不用非得跟的那么紧



P@tricK
2018-12-26

 9

老师你这个只能精确到元，女朋友羊毛精说要求精确到0.01元，时间空间复杂度增大100倍
🐶

作者回复: 👍 说的没错

Andylee
2018-12-26

 6

老师，倒数第二段的代码(背包升级版)的12行的if条件判断是不是写错了

作者回复: 是的 我改下

feifei
2018-12-28

 5

这个动态规划学习了三天了，把老师的代码都手练了一遍，感觉对动态规划有点感觉了！
然后在写这个课后题，我也练了一遍，我练了这么多，但我觉得动态规则这个最重要的是
每层可达的状态这个怎么计算的，这是重点，我开始的时候，用纸和笔，把老师的第一例
子，中的状态都画了出来，然后再来看代码，感觉很有帮助！ 
 …
展开

德尼
2019-01-30

 4

解答开篇代码的19行那的判断为什么是 j==-1？在上面的循环中假设从 w 到 3*w+1 没有
可解的话，那么 j 的结果不应该是 3*w+2 吗？

展开

G.S.K
2019-03-04

 3



关于knapsack2函数 
1 states表示当前背包总重量所有可能取值的集合 
2 如果将第i个物品放入背包，我们需要在当前背包总重量的所有取值中，找到小于等于j的
（j=w-items[i]） 
3 为什么第6行j需要从大到小来处理？因为循环的目的是在当前背包总重量的所有可能取…
展开

不上进的码...
2019-01-05

 3

关于课后杨辉三角最短路径的问题，应该用动态规划的两种方式都可以实现。1，状态转
移，和背包问题升级版类似，同样使用二维数组记录，一维表示行，二维表示列，值保存
最短路径，两种途径到达同一节点，我们只保存路径最短的值，然后一行一行遍历完，最
后把最后一行进行排序，选择最小的即可。需要注意的是，在生成二维数组的时候最好是
每行遍历生成，如第一行只有一个，第二行两个，这样可以节省一半的空间。2，方程转…
展开

失火的夏天
2018-12-27

 3

杨辉三角的动态规划转移方程是：S[i][j] = min(S[i-1][j],S[i-1][j-1]) + a[i][j]。 
其中a表示到这个点的value值，S表示到a[i][j]这个点的最短路径值。 
这里没有做边界条件限制，只是列出一个方程通式。边界条件需要在代码里具体处理。个
人感觉动态规划的思想关键在于如何列出动态规划方程，有了方程，代码基本就是水到渠
成了。

展开

黄均鹏
2019-02-25

 2

解开这道题的前提是首先得先有个女朋友

展开

作者回复: 男朋友也可以的：）

春去春又来
2019-02-15

 2



老师，这是我基于理解动态规划之后写出的优化版斐波那契数列，是否算是动态规划入门
了 - - 
function faibonacci(n) { 
    //可以基于动态规划的思想去优化 
    //存储每一个步骤的值，然后推导出之后的值 …
展开

作者回复: 👍 你还得把我文章里涉及的所有题目都搞明白、会默写才算入门呢

任悦
2018-12-28

 2

思考题这个杨辉三角有点巧了，最短路径就是最左边一列

像玉一样的...
2018-12-27

 2

老师，请教个问题，想了好久不知道该如何求解 
关于汇率方面的，比如手里有100人民币，设计一个汇率转换的环，比如人民币-》美元-》
日元-》韩元-》人民币，兑换一圈后，手里的钱一直在增加，这个问题该如何求解呢

展开

@
2018-12-26

 2

第三部分的代码，第11行是不是有问题？根据代码推不出states[4][3]=true???

blacknhole
2018-12-26

 2

有个疑问： 
解答开篇的示例代码中，for (int j = 0; j <= w; ++j) {...} 和 for (int j = 0; j <= w-
items[i]; ++j) {...} 的循环条件是不是有问题啊，应分别为 j <= 3 * w 和 j <= 3 * w -
items[i] 吧？

展开

作者回复: 是的 我改下 感谢



家
2018-12-26

 2

是不是可以从下往上递推，每个节点都选择下一层能到的两个节点中最小的一个和本身相
加，加到根节点应该就是最小值。

展开


