
43 | 拓扑排序：如何确定代码源文件的编译依赖关系？
2019-01-04 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 09:37 大小 8.82M

从今天开始，我们就进入了专栏的高级篇。相对基础篇，高级篇涉及的知识点，都比较零

散，不是太系统。所以，我会围绕一个实际软件开发的问题，在阐述具体解决方法的过程

中，将涉及的知识点给你详细讲解出来。

所以，相较于基础篇“开篇问题 - 知识讲解 - 回答开篇 - 总结 - 课后思考”这样的文章结

构，高级篇我稍作了些改变，大致分为这样几个部分：“问题阐述 - 算法解析 - 总结引申 -

课后思考”。

好了，现在，我们就进入高级篇的第一节，如何确定代码源文件的编译依赖关系？

我们知道，一个完整的项目往往会包含很多代码源文件。编译器在编译整个项目的时候，需

要按照依赖关系，依次编译每个源文件。比如，A.cpp 依赖 B.cpp，那在编译的时候，编译





 下载APP 

器需要先编译 B.cpp，才能编译 A.cpp。

编译器通过分析源文件或者程序员事先写好的编译配置文件（比如 Makefile 文件），来获

取这种局部的依赖关系。那编译器又该如何通过源文件两两之间的局部依赖关系，确定一个

全局的编译顺序呢？

算法解析

这个问题的解决思路与“图”这种数据结构的一个经典算法“拓扑排序算法”有关。那什么

是拓扑排序呢？这个概念很好理解，我们先来看一个生活中的拓扑排序的例子。

我们在穿衣服的时候都有一定的顺序，我们可以把这种顺序想成，衣服与衣服之间有一定的

依赖关系。比如说，你必须先穿袜子才能穿鞋，先穿内裤才能穿秋裤。假设我们现在有八件

衣服要穿，它们之间的两两依赖关系我们已经很清楚了，那如何安排一个穿衣序列，能够满

足所有的两两之间的依赖关系？

这就是个拓扑排序问题。从这个例子中，你应该能想到，在很多时候，拓扑排序的序列并不

是唯一的。你可以看我画的这幅图，我找到了好几种满足这些局部先后关系的穿衣序列。

弄懂了这个生活中的例子，开篇的关于编译顺序的问题，你应该也有思路了。开篇问题跟这

个问题的模型是一样的，也可以抽象成一个拓扑排序问题。

拓扑排序的原理非常简单，我们的重点应该放到拓扑排序的实现上面。

我前面多次讲过，算法是构建在具体的数据结构之上的。针对这个问题，我们先来看下，如

何将问题背景抽象成具体的数据结构？

我们可以把源文件与源文件之间的依赖关系，抽象成一个有向图。每个源文件对应图中的一

个顶点，源文件之间的依赖关系就是顶点之间的边。

如果 a 先于 b 执行，也就是说 b 依赖于 a，那么就在顶点 a 和顶点 b 之间，构建一条从 a

指向 b 的边。而且，这个图不仅要是有向图，还要是一个有向无环图，也就是不能存在像

a->b->c->a 这样的循环依赖关系。因为图中一旦出现环，拓扑排序就无法工作了。实际

上，拓扑排序本身就是基于有向无环图的一个算法。

1

2

3

4

5

6

public class Graph {
 private int v; // 顶点的个数

 private LinkedList<Integer> adj[]; // 邻接表

 public Graph(int v) {
 this.v = v;

复制代码

数据结构定义好了，现在，我们来看，如何在这个有向无环图上，实现拓扑排序？

拓扑排序有两种实现方法，都不难理解。它们分别是Kahn 算法和DFS 深度优先搜索算

法。我们依次来看下它们都是怎么工作的。

1.Kahn 算法

Kahn 算法实际上用的是贪心算法思想，思路非常简单、好懂。

定义数据结构的时候，如果 s 需要先于 t 执行，那就添加一条 s 指向 t 的边。所以，如果

某个顶点入度为 0， 也就表示，没有任何顶点必须先于这个顶点执行，那么这个顶点就可

以执行了。

我们先从图中，找出一个入度为 0 的顶点，将其输出到拓扑排序的结果序列中（对应代码

中就是把它打印出来），并且把这个顶点从图中删除（也就是把这个顶点可达的顶点的入度

都减 1）。我们循环执行上面的过程，直到所有的顶点都被输出。最后输出的序列，就是满

足局部依赖关系的拓扑排序。

我把 Kahn 算法用代码实现了一下，你可以结合着文字描述一块看下。不过，你应该能发

现，这段代码实现更有技巧一些，并没有真正删除顶点的操作。代码中有详细的注释，你自

己来看，我就不多解释了。

7

8

9

10

11

12

13

14

15

16

 adj = new LinkedList[v];
 for (int i=0; i<v; ++i) {
 adj[i] = new LinkedList<>();
 }
 }

 public void addEdge(int s, int t) { // s 先于 t，边 s->t
 adj[s].add(t);
 }
}

1

2

3

4

5

public void topoSortByKahn() {
 int[] inDegree = new int[v]; // 统计每个顶点的入度

 for (int i = 0; i < v; ++i) {
 for (int j = 0; j < adj[i].size(); ++j) {
 int w = adj[i].get(j); // i->w

复制代码

2.DFS 算法

图上的深度优先搜索我们前面已经讲过了，实际上，拓扑排序也可以用深度优先搜索来实

现。不过这里的名字要稍微改下，更加确切的说法应该是深度优先遍历，遍历图中的所有顶

点，而非只是搜索一个顶点到另一个顶点的路径。

关于这个算法的实现原理，我先把代码贴在下面，下面给你具体解释。

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 inDegree[w]++;
 }
 }
 LinkedList<Integer> queue = new LinkedList<>();
 for (int i = 0; i < v; ++i) {
 if (inDegree[i] == 0) queue.add(i);
 }
 while (!queue.isEmpty()) {
 int i = queue.remove();
 System.out.print("->" + i);
 for (int j = 0; j < adj[i].size(); ++j) {
 int k = adj[i].get(j);
 inDegree[k]--;
 if (inDegree[k] == 0) queue.add(k);
 }
 }
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

public void topoSortByDFS() {
 // 先构建逆邻接表，边 s->t 表示，s 依赖于 t，t 先于 s
 LinkedList<Integer> inverseAdj[] = new LinkedList[v];
 for (int i = 0; i < v; ++i) { // 申请空间

 inverseAdj[i] = new LinkedList<>();
 }
 for (int i = 0; i < v; ++i) { // 通过邻接表生成逆邻接表

 for (int j = 0; j < adj[i].size(); ++j) {
 int w = adj[i].get(j); // i->w
 inverseAdj[w].add(i); // w->i
 }
 }
 boolean[] visited = new boolean[v];
 for (int i = 0; i < v; ++i) { // 深度优先遍历图

 if (visited[i] == false) {
 visited[i] = true;
 dfs(i, inverseAdj, visited);
 }

复制代码

这个算法包含两个关键部分。

第一部分是通过邻接表构造逆邻接表。邻接表中，边 s->t 表示 s 先于 t 执行，也就是 t 要

依赖 s。在逆邻接表中，边 s->t 表示 s 依赖于 t，s 后于 t 执行。为什么这么转化呢？这个

跟我们这个算法的实现思想有关。

第二部分是这个算法的核心，也就是递归处理每个顶点。对于顶点 vertex 来说，我们先输

出它可达的所有顶点，也就是说，先把它依赖的所有的顶点输出了，然后再输出自己。

到这里，用 Kahn 算法和 DFS 算法求拓扑排序的原理和代码实现都讲完了。我们来看下，

这两个算法的时间复杂度分别是多少呢？

从 Kahn 代码中可以看出来，每个顶点被访问了一次，每个边也都被访问了一次，所以，

Kahn 算法的时间复杂度就是 O(V+E)（V 表示顶点个数，E 表示边的个数）。

DFS 算法的时间复杂度我们之前分析过。每个顶点被访问两次，每条边都被访问一次，所

以时间复杂度也是 O(V+E)。

注意，这里的图可能不是连通的，有可能是有好几个不连通的子图构成，所以，E 并不一定

大于 V，两者的大小关系不确定。所以，在表示时间复杂度的时候，V、E 都要考虑在内。

总结引申

19

20

21

22

23

24

25

26

27

28

29

30

31

 }
}

private void dfs(
 int vertex, LinkedList<Integer> inverseAdj[], boolean[] visited) {
 for (int i = 0; i < inverseAdj[vertex].size(); ++i) {
 int w = inverseAdj[vertex].get(i);
 if (visited[w] == true) continue;
 visited[w] = true;
 dfs(w, inverseAdj, visited);
 } // 先把 vertex 这个顶点可达的所有顶点都打印出来之后，再打印它自己

 System.out.print("->" + vertex);
}

在基础篇中，关于“图”，我们讲了图的定义和存储、图的广度和深度优先搜索。今天，我

们又讲了一个关于图的算法，拓扑排序。

拓扑排序应用非常广泛，解决的问题的模型也非常一致。凡是需要通过局部顺序来推导全局

顺序的，一般都能用拓扑排序来解决。除此之外，拓扑排序还能检测图中环的存在。对于

Kahn 算法来说，如果最后输出出来的顶点个数，少于图中顶点个数，图中还有入度不是 0

的顶点，那就说明，图中存在环。

关于图中环的检测，我们在递归那一节讲过一个例子，在查找最终推荐人的时候，可能会因

为脏数据，造成存在循环推荐，比如，用户 A 推荐了用户 B，用户 B 推荐了用户 C，用户

C 又推荐了用户 A。如何避免这种脏数据导致的无限递归？这个问题，我当时留给你思考

了，现在是时候解答了。

实际上，这就是环的检测问题。因为我们每次都只是查找一个用户的最终推荐人，所以，我

们并不需要动用复杂的拓扑排序算法，而只需要记录已经访问过的用户 ID，当用户 ID 第二

次被访问的时候，就说明存在环，也就说明存在脏数据。

如果把这个问题改一下，我们想要知道，数据库中的所有用户之间的推荐关系了，有没有存

在环的情况。这个问题，就需要用到拓扑排序算法了。我们把用户之间的推荐关系，从数据

库中加载到内存中，然后构建成今天讲的这种有向图数据结构，再利用拓扑排序，就可以快

速检测出是否存在环了。

课后思考

1

2

3

4

5

6

7

8

9

10

11

HashSet<Integer> hashTable = new HashSet<>(); // 保存已经访问过的 actorId
long findRootReferrerId(long actorId) {
 if (hashTable.contains(actorId)) { // 存在环

 return;
 }
 hashTable.add(actorId);
 Long referrerId =
 select referrer_id from [table] where actor_id = actorId;
 if (referrerId == null) return actorId;
 return findRootReferrerId(referrerId);
}

复制代码

https://time.geekbang.org/column/article/41440

1. 在今天的讲解中，我们用图表示依赖关系的时候，如果 a 先于 b 执行，我们就画一条从

a 到 b 的有向边；反过来，如果 a 先于 b，我们画一条从 b 到 a 的有向边，表示 b 依赖

a，那今天讲的 Kahn 算法和 DFS 算法还能否正确工作呢？如果不能，应该如何改造一

下呢？

2. 我们今天讲了两种拓扑排序算法的实现思路，Kahn 算法和 DFS 深度优先搜索算法，如

果换做 BFS 广度优先搜索算法，还可以实现吗？

欢迎留言和我分享，也欢迎点击“请朋友读”，把今天的内容分享给你的好友，和他一起讨

论、学习。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 42 | 动态规划实战：如何实现搜索引擎中的拼写纠错功能？

下一篇 44 | 最短路径：地图软件是如何计算出最优出行路径的？

Jerry银银
2019-01-04

 39

精选留言 (30)  写留言

老师，这门专栏快结束了，突然有点新的想法：如果老师在讲解算法的时候，多讲点算法
的由来，也就是背景，那就更好了。

我想，如果能知道某个算法的创造者为什么会发明某个算法，怎么能够发明出某个算法，
我想我们会掌握得更牢，学得应该也稍微轻松一点，关键是能跟随发明者回到原点，体…
展开

编辑回复: 这个有意思，我们想想。

Jerry银银
2019-01-04

 9

思考题：
1. a先于b执行，也就说b依赖于a，b指向a，这样构建有向无环图时，要找到出度为0的顶
点，然后删除

2. BFS也能实现，因为遍历只是实现拓扑排序的一个“辅助手段”，本质上是帮助找到优…
展开

Handongya...
2019-01-07

 5

@Jerry银银
针对你提的算法的由来与背景的问题，我想我们完全可以通过维基百科查看，一般都有其
背景以及算法应用的场景，甚至有些算法在维基百科上有相应的文献引用，这些都可以参
考。

展开

作者回复: 银银同学要的显然不是这些

这就好比我在跟大家讲古诗 登黄鹤楼。银银同学想知道的是 怎么才能站在黄鹤楼上 作出登黄鹤楼

这么牛逼的诗 诗人的脑回路是咋样的

而并不是想要历史性介绍 这首诗是谁谁谁 在某某年 某某地 历史背景下 做出来的

不知道我理解的对不

关于前者 我在讲解的时候已经尽量还原来龙去脉 但是可能学的并不明显 而且这本身就是很难说清

楚的 说不定诗人自己都不知道自己咋写出这么牛逼的诗的

Aaron
2019-01-05

 4

课后思考里“BFS 深度优先搜索算法”是否应该是“BFS 广度优先搜索算法”？BFS:
Breadth-first Search

纯洁的憎恶
2019-01-04

 3

1.kahn算法找出度为0的节点删除。dfs算法直接用正邻接表即可。

2. BFS也可以。其实与DFS一样，BFS也是从某个节点开始，找到所有与其相连通的节点。
区别在于BFS是一层一层找（递归函数在for循环外），DFS是先一杆子插到底，再回来插
第二条路、第三条路等等（递归函数在for循环内）。

展开

蓝天
2019-01-07

 2

刚解决完工作中类似的问题 老师的文章就来了，然后才知道那个算法叫kahn

你有资格吗...
2019-01-07

 2

老师，好像数据结构少了B+树的讲解啊，B+不准备讲吗？

Edward
2019-01-05

 1

老师你好。我在做一道动态规划题的时候，不借助其他启发性线索时，在纸上演算一遍
后，发现自己如果不能直觉地从演算中推演出解答的关键，就会产生强烈的自我怀疑。会
有一层对自己智力水平的怀疑，如果没有一定的智商，是不适合做这事情的。请问老师你
有什么方法，可以克服这种自我的质疑？

展开

作者回复: 多练习 多思考 多总结 慢慢就好了 都有这么一个过程的

NeverMore
2019-01-04

 1

1、反过来的话计算的就不是入度了，可以用出度来判断；
2、BFS的话，则需要记录上一个节点是哪个，可以实现，但是比DFS要麻烦些。
还请老师指点。
老师之后能不能给思考题一个答疑？

展开

作者回复: 专栏结束的时候吧 也算是一个回顾 现在年底忙 没啥时间写呢

farFlight
2019-01-04

 1

老师，我觉得这里BFS和Kahn算法基本可以说是一样的，本身Kahn贪婪算法运用queue实
现的过程就是一个典型的BFS范式。采用BFS就应该按照入度一层一层遍历，一层遍历完了
的同时把下一层的顶点push进入queue中。

展开

草长莺飞
2019-04-02



可汗算法里面，需要把入度所有的都存到数组中吗？
当我们求出所有节点的入度时，求出入度最大的数，然后依次从0到这个最大数依次打印节
点
这样的结果也是正确的吧

且听疯吟
2019-03-06



https://leetcode-cn.com/problems/course-schedule-ii/
leetcode原题，大家可以试试

展开

jueyoq
2019-02-12



老师什么时候再出课程呀。 按照咱们这销量，可以开始新专栏预告辣

随心而至
2019-02-01



问题1:khan改为出度为0，深度优先搜索改为先打印
问题2:广度优先遍历节点保存到双向链表中，然后逆序输出

展开

左瞳
2019-02-01



编译过程如果存在两个互相依赖的类呢？

展开

想当架构师
2019-01-26



我怎么觉得这个kahn算法其实就是BFS算法

展开

不系之舟
2019-01-19



老师您好，还看到过另一个深度优先遍历的方法，是通过将节点涂不同的颜色判断是否在
遍历的时候遇到了环，这种方法看着应该很明了，但是好像很少看到有人这么写程序，不
知道是什么原因呢？

作者回复: 那个比较大而全，所以不经常用。

猫头鹰爱拿...
2019-01-18



思考题：
1、思路是找出度为0的节点然后打印出来。kahn算法可以和上面的类似通过构建逆临接表
找出入度为0的节点，其余都一样。dfs和讲解中代码一致只是不需要再构建逆邻接表了。
2、bfs解的思路感觉就和kahn一样。找入度为0的节点放入queue再取出找到它的邻接节
点入度减1，如果减1后等于0再放入queue。依此类推。

展开

Alexis何春...
2019-01-13



kahn算法中统计每个顶点的入度，有两层循环，时间复杂度为什么不是O(V*E)呢？

作者回复: 第一层是v 但第二层不是E呢

Alexis何春...
2019-01-13



这个问题有没有可能通过hashmap来做？用每一个事件之前的一个事件作为key, 事件本身
作为value，然后遍历一遍

展开

