
48 | B+树：MySQL数据库索引是如何实现的？
2019-01-16 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 13:25 大小 12.30M

作为一个软件开发工程师，你对数据库肯定再熟悉不过了。作为主流的数据存储系统，它在

我们的业务开发中，有着举足轻重的地位。在工作中，为了加速数据库中数据的查找速度，

我们常用的处理思路是，对表中数据创建索引。那你是否思考过，数据库索引是如何实现的

呢？底层使用的是什么数据结构和算法呢？

算法解析

思考的过程比结论更重要。跟着我学习了这么多节课，很多同学已经意识到这一点，比如

Jerry 银银同学。我感到很开心。所以，今天的讲解，我会尽量还原这个解决方案的思考过

程，让你知其然，并且知其所以然。

1. 解决问题的前提是定义清楚问题





 下载APP 

如何定义清楚问题呢？除了对问题进行详细的调研，还有一个办法，那就是，通过对一些模

糊的需求进行假设，来限定要解决的问题的范围。

如果你对数据库的操作非常了解，针对我们现在这个问题，你就能把索引的需求定义得非常

清楚。但是，对于大部分软件工程师来说，我们可能只了解一小部分常用的 SQL 语句，所

以，这里我们假设要解决的问题，只包含这样两个常用的需求：

除了这些功能性需求之外，这种问题往往还会涉及一些非功能性需求，比如安全、性能、用

户体验等等。限于专栏要讨论的主要是数据结构和算法，对于非功能性需求，我们着重考虑

性能方面的需求。性能方面的需求，我们主要考察时间和空间两方面，也就是执行效率和存

储空间。

在执行效率方面，我们希望通过索引，查询数据的效率尽可能的高；在存储空间方面，我们

希望索引不要消耗太多的内存空间。

2. 尝试用学过的数据结构解决这个问题

问题的需求大致定义清楚了，我们现在回想一下，能否利用已经学习过的数据结构解决这个

问题呢？支持快速查询、插入等操作的动态数据结构，我们已经学习过散列表、平衡二叉查

找树、跳表。

我们先来看散列表。散列表的查询性能很好，时间复杂度是 O(1)。但是，散列表不能支持

按照区间快速查找数据。所以，散列表不能满足我们的需求。

我们再来看平衡二叉查找树。尽管平衡二叉查找树查询的性能也很高，时间复杂度是

O(logn)。而且，对树进行中序遍历，我们还可以得到一个从小到大有序的数据序列，但这

仍然不足以支持按照区间快速查找数据。

我们再来看跳表。跳表是在链表之上加上多层索引构成的。它支持快速地插入、查找、删除

数据，对应的时间复杂度是 O(logn)。并且，跳表也支持按照区间快速地查找数据。我们只

根据某个值查找数据，比如 select * from user where id=1234；

根据区间值来查找某些数据，比如 select * from user where id > 1234 and id <

2345。

需要定位到区间起点值对应在链表中的结点，然后从这个结点开始，顺序遍历链表，直到区

间终点对应的结点为止，这期间遍历得到的数据就是满足区间值的数据。

这样看来，跳表是可以解决这个问题。实际上，数据库索引所用到的数据结构跟跳表非常相

似，叫作 B+ 树。不过，它是通过二叉查找树演化过来的，而非跳表。为了给你还原发明

B+ 树的整个思考过程，所以，接下来，我还再从二叉查找树讲起，看它是如何一步一步被

改造成 B+ 树的。

3. 改造二叉查找树来解决这个问题

为了让二叉查找树支持按照区间来查找数据，我们可以对它进行这样的改造：树中的节点并

不存储数据本身，而是只是作为索引。除此之外，我们把每个叶子节点串在一条链表上，链

表中的数据是从小到大有序的。经过改造之后的二叉树，就像图中这样，看起来是不是很像

跳表呢？

改造之后，如果我们要求某个区间的数据。我们只需要拿区间的起始值，在树中进行查找，

当查找到某个叶子节点之后，我们再顺着链表往后遍历，直到链表中的结点数据值大于区间

的终止值为止。所有遍历到的数据，就是符合区间值的所有数据。

但是，我们要为几千万、上亿的数据构建索引，如果将索引存储在内存中，尽管内存访问的

速度非常快，查询的效率非常高，但是，占用的内存会非常多。

比如，我们给一亿个数据构建二叉查找树索引，那索引中会包含大约 1 亿个节点，每个节

点假设占用 16 个字节，那就需要大约 1GB 的内存空间。给一张表建立索引，我们需要

1GB 的内存空间。如果我们要给 10 张表建立索引，那对内存的需求是无法满足的。如何

解决这个索引占用太多内存的问题呢？

我们可以借助时间换空间的思路，把索引存储在硬盘中，而非内存中。我们都知道，硬盘是

一个非常慢速的存储设备。通常内存的访问速度是纳秒级别的，而磁盘访问的速度是毫秒级

别的。读取同样大小的数据，从磁盘中读取花费的时间，是从内存中读取所花费时间的上万

倍，甚至几十万倍。

这种将索引存储在硬盘中的方案，尽管减少了内存消耗，但是在数据查找的过程中，需要读

取磁盘中的索引，因此数据查询效率就相应降低很多。

二叉查找树，经过改造之后，支持区间查找的功能就实现了。不过，为了节省内存，如果把

树存储在硬盘中，那么每个节点的读取（或者访问），都对应一次磁盘 IO 操作。树的高度

就等于每次查询数据时磁盘 IO 操作的次数。

我们前面讲到，比起内存读写操作，磁盘 IO 操作非常耗时，所以我们优化的重点就是尽量

减少磁盘 IO 操作，也就是，尽量降低树的高度。那如何降低树的高度呢？

我们来看下，如果我们把索引构建成 m 叉树，高度是不是比二叉树要小呢？如图所示，给

16 个数据构建二叉树索引，树的高度是 4，查找一个数据，就需要 4 个磁盘 IO 操作（如

果根节点存储在内存中，其他结点存储在磁盘中），如果对 16 个数据构建五叉树索引，那

高度只有 2，查找一个数据，对应只需要 2 次磁盘操作。如果 m 叉树中的 m 是 100，那

对一亿个数据构建索引，树的高度也只是 3，最多只要 3 次磁盘 IO 就能获取到数据。磁盘

IO 变少了，查找数据的效率也就提高了。

如果我们将 m 叉树实现 B+ 树索引，用代码实现出来，就是下面这个样子（假设我们给

int 类型的数据库字段添加索引，所以代码中的 keywords 是 int 类型的）：

1

2

3

4

5

6

7

8

9

10

/**
 * 这是 B+ 树非叶子节点的定义。

 *
 * 假设 keywords=[3, 5, 8, 10]
 * 4 个键值将数据分为 5 个区间：(-INF,3), [3,5), [5,8), [8,10), [10,INF)
 * 5 个区间分别对应：children[0]...children[4]
 *
 * m 值是事先计算得到的，计算的依据是让所有信息的大小正好等于页的大小：

 * PAGE_SIZE = (m-1)*4[keywordss 大小]+m*8[children 大小]
 */

复制代码

我稍微解释一下这段代码。

对于相同个数的数据构建 m 叉树索引，m 叉树中的 m 越大，那树的高度就越小，那 m 叉

树中的 m 是不是越大越好呢？到底多大才最合适呢？

不管是内存中的数据，还是磁盘中的数据，操作系统都是按页（一页大小通常是 4KB，这

个值可以通过 getconfig PAGE_SIZE 命令查看）来读取的，一次会读一页的数据。如果要

读取的数据量超过一页的大小，就会触发多次 IO 操作。所以，我们在选择 m 大小的时

候，要尽量让每个节点的大小等于一个页的大小。读取一个节点，只需要一次磁盘 IO 操

作。

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

public class BPlusTreeNode {
 public static int m = 5; // 5 叉树

 public int[] keywords = new int[m-1]; // 键值，用来划分数据区间

 public BPlusTreeNode[] children = new BPlusTreeNode[m];// 保存子节点指针

}

/**
 * 这是 B+ 树中叶子节点的定义。

 *
 * B+ 树中的叶子节点跟内部结点是不一样的,
 * 叶子节点存储的是值，而非区间。

 * 这个定义里，每个叶子节点存储 3 个数据行的键值及地址信息。

 *
 * k 值是事先计算得到的，计算的依据是让所有信息的大小正好等于页的大小：

 * PAGE_SIZE = k*4[keyw.. 大小]+k*8[dataAd.. 大小]+8[prev 大小]+8[next 大小]
 */
public class BPlusTreeLeafNode {
 public static int k = 3;
 public int[] keywords = new int[k]; // 数据的键值

 public long[] dataAddress = new long[k]; // 数据地址

 public BPlusTreeLeafNode prev; // 这个结点在链表中的前驱结点

 public BPlusTreeLeafNode next; // 这个结点在链表中的后继结点

}

尽管索引可以提高数据库的查询效率，但是，作为一名开发工程师，你应该也知道，索引有

利也有弊，它也会让写入数据的效率下降。这是为什么呢？

数据的写入过程，会涉及索引的更新，这是索引导致写入变慢的主要原因。

对于一个 B+ 树来说，m 值是根据页的大小事先计算好的，也就是说，每个节点最多只能

有 m 个子节点。在往数据库中写入数据的过程中，这样就有可能使索引中某些节点的子节

点个数超过 m，这个节点的大小超过了一个页的大小，读取这样一个节点，就会导致多次

磁盘 IO 操作。我们该如何解决这个问题呢？

实际上，处理思路并不复杂。我们只需要将这个节点分裂成两个节点。但是，节点分裂之

后，其上层父节点的子节点个数就有可能超过 m 个。不过这也没关系，我们可以用同样的

方法，将父节点也分裂成两个节点。这种级联反应会从下往上，一直影响到根节点。这个分

裂过程，你可以结合着下面这个图一块看，会更容易理解（图中的 B+ 树是一个三叉树。我

们限定叶子节点中，数据的个数超过 2 个就分裂节点；非叶子节点中，子节点的个数超过

3 个就分裂节点）。

正是因为要时刻保证 B+ 树索引是一个 m 叉树，所以，索引的存在会导致数据库写入的速

度降低。实际上，不光写入数据会变慢，删除数据也会变慢。这是为什么呢？

我们在删除某个数据的时候，也要对应的更新索引节点。这个处理思路有点类似跳表中删除

数据的处理思路。频繁的数据删除，就会导致某些结点中，子节点的个数变得非常少，长此

以往，如果每个节点的子节点都比较少，势必会影响索引的效率。

我们可以设置一个阈值。在 B+ 树中，这个阈值等于 m/2。如果某个节点的子节点个数小

于 m/2，我们就将它跟相邻的兄弟节点合并。不过，合并之后结点的子节点个数有可能会

超过 m。针对这种情况，我们可以借助插入数据时候的处理方法，再分裂节点。

文字描述不是很直观，我举了一个删除操作的例子，你可以对比着看下（图中的 B+ 树是一

个五叉树。我们限定叶子节点中，数据的个数少于 2 个就合并节点；非叶子节点中，子节

点的个数少于 3 个就合并节点。）。

数据库索引以及 B+ 树的由来，到此就讲完了。你有没有发现，B+ 树的结构和操作，跟跳

表非常类似。理论上讲，对跳表稍加改造，也可以替代 B+ 树，作为数据库的索引实现的。

B+ 树发明于 1972 年，跳表发明于 1989 年，我们可以大胆猜想下，跳表的作者有可能就

是受了 B+ 树的启发，才发明出跳表来的。不过，这个也无从考证了。

总结引申

今天，我们讲解了数据库索引实现，依赖的底层数据结构，B+ 树。它通过存储在磁盘的多

叉树结构，做到了时间、空间的平衡，既保证了执行效率，又节省了内存。

前面的讲解中，为了一步一步详细地给你介绍 B+ 树的由来，内容看起来比较零散。为了方

便你掌握和记忆，我这里再总结一下 B+ 树的特点：

每个节点中子节点的个数不能超过 m，也不能小于 m/2；

根节点的子节点个数可以不超过 m/2，这是一个例外；

m 叉树只存储索引，并不真正存储数据，这个有点儿类似跳表；

除了 B+ 树，你可能还听说过 B 树、B- 树，我这里简单提一下。实际上，B- 树就是 B

树，英文翻译都是 B-Tree，这里的“-”并不是相对 B+ 树中的“+”，而只是一个连接

符。这个很容易误解，所以我强调下。

而 B 树实际上是低级版的 B+ 树，或者说 B+ 树是 B 树的改进版。B 树跟 B+ 树的不同点

主要集中在这几个地方：

也就是说，B 树只是一个每个节点的子节点个数不能小于 m/2 的 m 叉树。

课后思考

1. B+ 树中，将叶子节点串起来的链表，是单链表还是双向链表？为什么？

2. 我们对平衡二叉查找树进行改造，将叶子节点串在链表中，就支持了按照区间来查找数

据。我们在散列表（下）讲到，散列表也经常跟链表一块使用，如果我们把散列表中的

结点，也用链表串起来，能否支持按照区间查找数据呢？

欢迎留言和我分享，也欢迎点击“请朋友读”，把今天的内容分享给你的好友，和他一起讨

论、学习。

通过链表将叶子节点串联在一起，这样可以方便按区间查找；

一般情况，根节点会被存储在内存中，其他节点存储在磁盘中。

B+ 树中的节点不存储数据，只是索引，而 B 树中的节点存储数据；

B 树中的叶子节点并不需要链表来串联。

https://time.geekbang.org/column/article/64858

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 47 | 向量空间：如何实现一个简单的音乐推荐系统？

下一篇 49 | 搜索：如何用A*搜索算法实现游戏中的寻路功能？

Jerry银银
2019-01-16

 112

听专栏，听到了自己的名字，不敢相信，看了文稿，确实是自己。真是受宠若惊！

城
2019-01-16

 37

1.链表是双向链表，用以支持前后遍历
2.散列表的节点用链表串起来，并不能实现范围查询，因为散列表本身无序，而B+树是基
于二叉查找树演变而成，是有序的

精选留言 (57)  写留言

Jerry银银2019-01-19 
31

个人觉得B+tree理解起来真不难，抓住几个要点就可以了：
1. 理解二叉查找树
2. 理解二叉查找树会出现不平衡的问题（红黑树理解了，对于平衡性这个关键点就理解
了）
3. 磁盘IO访问太耗时 …
展开

作者回复: 👍

老杨同志
2019-01-17

 7

问题一，双向链表，方便asc和desc。
问题二，可以支持区间查询。java中linkedHashMap就是链表链表+HashMap的组合，用
于实现缓存的lru算法比较方便，不过要支持区间查询需要在插入时维持链表的有序性，复
杂度O(n).效率比跳表和b+tree差

展开

Felix Env...
2019-02-18

 6

看到留言里很多同学都说第二题答案是肯定的，有点不同意。
如果区间边界值在在散列表中没有命中，那么就无法定位区间的起始节点。
如有错误望指出～

展开

feifei
2019-01-24

 4

老师，看了你的讲解，对于B+树的原理，我基本理解了，我又找了b+树的代码实现，也搞
懂怎么回事了，当我看懂了，这个B+树的实现了之后，我就有个问题，这个B+树该如何保
存到磁盘中呢？我搜索了好多，也没有找到相关的一个代码，你有这相关的资料吗？这种
数据一般是如何保存的？谢谢

展开

作者回复: 我懂你的意思。具体我没研究过。我觉得可以直接存到文件里。节点在文件里的位置表

示指针。我瞎猜的：）等我研究研究再说：）

有朋自远方...
2019-01-16

 3

1.利用磁盘预读功能2.主簇索引
觉得这两点也很重要。

茴香根
2019-01-16

 3

好开心，终于搞清楚经常见到的b+树结构了。从这一节看到对于大数据情况下，m的大小
对查询速度有重要影响。如在一些一些特定场合是否可以通过增大内存页和磁盘页大小来
进一步提升查询效率。对于思考题中hash做索引，我认为是可行的，但每次更新索引时，
如果新进入的节点索引需要插入到相应的位置，要保持叶子链表的有序。

展开

hnbc
2019-03-13

 2

老师，我想问一下100叉树为什么是3次io操作，不应该是4次吗，100的4次方是1亿

作者回复: 这...第一层索引节点可以放到内存里的，这样就3次了：）

唯她命
2019-01-30

 2

老师 网上查到的资料 说有k个子树的中间节点包含有k个元素（B树中是k-1个元素）
和你讲的不同

展开

作者回复: 咱不要太教科书化啊。理解思想最重要啊。我觉得我讲的没问题啊。

Monday
2019-01-20

 2

请问：
第一段代码，第9行：
PAGE_SIZE = (m-1)*4[keywordss 大小]+m*8[children 大小]
1，这个8指的是引用（指针）占的内存大小吗？
2，引用大小是怎么计算的？和机器是多少位的有什么关系吗？ …
展开

作者回复: 1. 是的

2. 有关系的，就是用多少位表示一个存储地址

Monday
2019-01-17

 2

先回答思考题：
1. 双向链表，为了支持在O(logn)时间复杂度删除节点
2.支持按区间查找数据。那么问题来了，为什么mysql索引不采用散列表+双向链表的数据
结果来实现呢？

yaya
2019-01-16

 2

1从图上来看，b+叶结点串起来的是双向链表
2不可以，因为散列表的是被mod后的，查询区间依然需要遍历所有结点
以前学b+树的时候，完全不知道它为什么这样设计，感觉很奇怪，今天才明白是为了提供
区间查询，优化操作次数。

展开

朱东旭
2019-05-05

 1

这里讲的仅仅是单列索引，实际项目中组合索引使用应该比单列索引多，组合索引版的
B+树是如何实现的，这个重要的知识点似乎被遗漏了。

展开

唯她命
2019-01-30

 1

老师，现在觉得 你画的图 都是B树 而不是B+树

展开

作者回复: 好像不是吧

田伟 ค.ิ..
2019-01-29

 1

B+树和跳表很像，都是双向链表+索引的结构，数据都放在最下边，利用二分查找进行有
序数列查找，区别是啥？我猜想主要区别在索引：
1.高度：同数量级的数据，跳表索引的高度会很高，IO读取次数多，影响查询性能
2.页空间浪费：mysql默认页空间16K,跳表默认一个节点只存一个数，其他空间都浪费了

展开

刘章周
2019-01-16

 1

我觉得是双向链表，sql语句中有按照从大到小进行排序，当使用索引进行排序时，如果是
单向链表，还要把数据取出来放入内存中排序，效率降低，如果排序的数据较多，内存不
够，还会借助外部文件通过归并排序进行排序，效率很低。不知道说的对不对。

展开

五岳寻仙
2019-01-16

 1

课后思考题1
我觉得应该是双链表。对于区间查找，我们既需要支持大于某个值的查找(向右遍历)，也需
要支持小于某个值的查找(向左遍历)。

思考题2 …
展开

K战神
2019-01-16

 1

打卡

展开

闫循鸣
2019-04-24



oracle的btree索引有时候不去位图索引 是btree需要的io次数比位图多吗？ 位图又是如何
优化的？

作者回复: 问题有点笼统 有点大了

