
54 | 算法实战（三）：剖析高性能队列Disruptor背后的数据结构
和算法
2019-01-30 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 11:59 大小 10.99M

Disruptor 你是否听说过呢？它是一种内存消息队列。从功能上讲，它其实有点儿类似

Kafka。不过，和 Kafka 不同的是，Disruptor 是线程之间用于消息传递的队列。它在

Apache Storm、Camel、Log4j 2 等很多知名项目中都有广泛应用。

之所以如此受青睐，主要还是因为它的性能表现非常优秀。它比 Java 中另外一个非常常用

的内存消息队列 ArrayBlockingQueue（ABS）的性能，要高一个数量级，可以算得上是

最快的内存消息队列了。它还因此获得过 Oracle 官方的 Duke 大奖。

如此高性能的内存消息队列，在设计和实现上，必然有它独到的地方。今天，我们就来一块

儿看下，Disruptor 是如何做到如此高性能的？其底层依赖了哪些数据结构和算法？





 下载APP 

基于循环队列的“生产者 - 消费者模型”

什么是内存消息队列？对很多业务工程师或者前端工程师来说，可能会比较陌生。不过，如

果我说“生产者 - 消费者模型”，估计大部分人都知道。在这个模型中，“生产者”生产

数据，并且将数据放到一个中心存储容器中。之后，“消费者”从中心存储容器中，取出数

据消费。

这个模型非常简单、好理解，那你有没有思考过，这里面存储数据的中心存储容器，是用什

么样的数据结构来实现的呢？

实际上，实现中心存储容器最常用的一种数据结构，就是我们在第 9 节讲的队列。队列支

持数据的先进先出。正是这个特性，使得数据被消费的顺序性可以得到保证，也就是说，早

被生产的数据就会早被消费。

我们在第 9 节讲过，队列有两种实现思路。一种是基于链表实现的链式队列，另一种是基

于数组实现的顺序队列。不同的需求背景下，我们会选择不同的实现方式。

如果我们要实现一个无界队列，也就是说，队列的大小事先不确定，理论上可以支持无限

大。这种情况下，我们适合选用链表来实现队列。因为链表支持快速地动态扩容。如果我们

要实现一个有界队列，也就是说，队列的大小事先确定，当队列中数据满了之后，生产者就

需要等待。直到消费者消费了数据，队列有空闲位置的时候，生产者才能将数据放入。

实际上，相较于无界队列，有界队列的应用场景更加广泛。毕竟，我们的机器内存是有限

的。而无界队列占用的内存数量是不可控的。对于实际的软件开发来说，这种不可控的因

素，就会有潜在的风险。在某些极端情况下，无界队列就有可能因为内存持续增长，而导致

OOM（Out of Memory）错误。

在第 9 节中，我们还讲过一种特殊的顺序队列，循环队列。我们讲过，非循环的顺序队列

在添加、删除数据的工程中，会涉及数据的搬移操作，导致性能变差。而循环队列正好可以

解决这个数据搬移的问题，所以，性能更加好。所以，大部分用到顺序队列的场景中，我们

都选择用顺序队列中的循环队列。

实际上，循环队列这种数据结构，就是我们今天要讲的内存消息队列的雏形。我借助循环队

列，实现了一个最简单的“生产者 - 消费者模型”。对应的代码我贴到这里，你可以看

看。

https://time.geekbang.org/column/article/41330

为了方便你理解，对于生产者和消费者之间操作的同步，我并没有用到线程相关的操作。而

是采用了“当队列满了之后，生产者就轮训等待；当队列空了之后，消费者就轮训等待”这

样的措施。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

public class Queue {
 private Long[] data;
 private int size = 0, head = 0, tail = 0;
 public Queue(int size) {
 this.data = new Long[size];
 this.size = size;
 }

 public boolean add(Long element) {
 if ((tail + 1) % size == head) return false;
 data[tail] = element;
 tail = (tail + 1) % size;
 return true;
 }

 public Long poll() {
 if (head == tail) return null;
 long ret = data[head];
 head = (head + 1) % size;
 return ret;
 }
}

public class Producer {
 private Queue queue;
 public Producer(Queue queue) {
 this.queue = queue;
 }

 public void produce(Long data) throws InterruptedException {
 while (!queue.add(data)) {
 Thread.sleep(100);
 }
 }
}

public class Consumer {
 private Queue queue;
 public Consumer(Queue queue) {
 this.queue = queue;
 }

 public void comsume() throws InterruptedException {
 while (true) {

复制代码

基于加锁的并发“生产者 - 消费者模型”

实际上，刚刚的“生产者 - 消费者模型”实现代码，是不完善的。为什么这么说呢？

如果我们只有一个生产者往队列中写数据，一个消费者从队列中读取数据，那上面的代码是

没有问题的。但是，如果有多个生产者在并发地往队列中写入数据，或者多个消费者并发地

从队列中消费数据，那上面的代码就不能正确工作了。我来给你讲讲为什么。

在多个生产者或者多个消费者并发操作队列的情况下，刚刚的代码主要会有下面两个问题：

因为第一个问题和第二个问题产生的原理是类似的。所以，我着重讲解第一个问题是如何产

生的以及该如何解决。对于第二个问题，你可以类比我对第一个问题的解决思路自己来想一

想。

两个线程同时往队列中添加数据，也就相当于两个线程同时执行类 Queue 中的 add() 函

数。我们假设队列的大小 size 是 10，当前的 tail 指向下标 7，head 指向下标 3，也就是

说，队列中还有空闲空间。这个时候，线程 1 调用 add() 函数，往队列中添加一个值为 12

的数据；线程 2 调用 add() 函数，往队列中添加一个值为 15 的数据。在极端情况下，本

来是往队列中添加了两个数据（12 和 15），最终可能只有一个数据添加成功，另一个数据

会被覆盖。这是为什么呢？

45

46

47

48

49

50

51

52

53

 Long data = queue.poll();
 if (data == null) {
 Thread.sleep(100);
 } else {
 // TODO:... 消费数据的业务逻辑...
 }
 }
 }
}

多个生产者写入的数据可能会互相覆盖；

多个消费者可能会读取重复的数据。

为了方便你查看队列 Queue 中的 add() 函数，我把它从上面的代码中摘录出来，贴在这

里。

从这段代码中，我们可以看到，第 3 行给 data[tail] 赋值，然后第 4 行才给 tail 的值加

一。赋值和 tail 加一两个操作，并非原子操作。这就会导致这样的情况发生：当线程 1 和

线程 2 同时执行 add() 函数的时候，线程 1 先执行完了第 3 行语句，将 data[7]（tail 等

于 7）的值设置为 12。在线程 1 还未执行到第 4 行语句之前，也就是还未将 tail 加一之

前，线程 2 执行了第 3 行语句，又将 data[7] 的值设置为 15，也就是说，那线程 2 插入的

数据覆盖了线程 1 插入的数据。原本应该插入两个数据（12 和 15）的，现在只插入了一

个数据（15）。

1

2

3

4

5

6

public boolean add(Long element) {
 if ((tail + 1) % size == head) return false;
 data[tail] = element;
 tail = (tail + 1) % size;
 return true;
}

复制代码

那如何解决这种线程并发往队列中添加数据时，导致的数据覆盖、运行不正确问题呢？

最简单的处理方法就是给这段代码加锁，同一时间只允许一个线程执行 add() 函数。这就

相当于将这段代码的执行，由并行改成了串行，也就不存在我们刚刚说的问题了。

不过，天下没有免费的午餐，加锁将并行改成串行，必然导致多个生产者同时生产数据的时

候，执行效率的下降。当然，我们可以继续优化代码，用CAS（compare and swap，比

https://en.wikipedia.org/wiki/Compare-and-swap

较并交换）操作等减少加锁的粒度，但是，这不是我们这节的重点。我们直接看 Disruptor

的处理方法。

基于无锁的并发“生产者 - 消费者模型”

尽管 Disruptor 的源码读起来很复杂，但是基本思想其实非常简单。实际上，它是换了一

种队列和“生产者 - 消费者模型”的实现思路。

之前的实现思路中，队列只支持两个操作，添加数据和读取并移除数据，分别对应代码中的

add() 函数和 poll() 函数，而 Disruptor 采用了另一种实现思路。

对于生产者来说，它往队列中添加数据之前，先申请可用空闲存储单元，并且是批量地申请

连续的 n 个（n≥1）存储单元。当申请到这组连续的存储单元之后，后续往队列中添加元

素，就可以不用加锁了，因为这组存储单元是这个线程独享的。不过，从刚刚的描述中，我

们可以看出，申请存储单元的过程是需要加锁的。

对于消费者来说，处理的过程跟生产者是类似的。它先去申请一批连续可读的存储单元（这

个申请的过程也是需要加锁的），当申请到这批存储单元之后，后续的读取操作就可以不用

加锁了。

不过，还有一个需要特别注意的地方，那就是，如果生产者 A 申请到了一组连续的存储单

元，假设是下标为 3 到 6 的存储单元，生产者 B 紧跟着申请到了下标是 7 到 9 的存储单

元，那在 3 到 6 没有完全写入数据之前，7 到 9 的数据是无法读取的。这个也是

Disruptor 实现思路的一个弊端。

文字描述不好理解，我画了一个图，给你展示一下这个操作过程。

实际上，Disruptor 采用的是 RingBuffer 和 AvailableBuffer 这两个结构，来实现我刚刚

讲的功能。不过，因为我们主要聚焦在数据结构和算法上，所以我对这两种结构做了简化，

但是基本思想是一致的。如果你对 Disruptor 感兴趣，可以去阅读一下它的源码。

总结引申

今天，我讲了如何实现一个高性能的并发队列。这里的“并发”两个字，实际上就是多线程

安全的意思。

常见的内存队列往往采用循环队列来实现。这种实现方法，对于只有一个生产者和一个消费

者的场景，已经足够了。但是，当存在多个生产者或者多个消费者的时候，单纯的循环队列

的实现方式，就无法正确工作了。

这主要是因为，多个生产者在同时往队列中写入数据的时候，在某些情况下，会存在数据覆

盖的问题。而多个消费者同时消费数据，在某些情况下，会存在消费重复数据的问题。

https://github.com/LMAX-Exchange/disruptor

针对这个问题，最简单、暴力的解决方法就是，对写入和读取过程加锁。这种处理方法，相

当于将原来可以并行执行的操作，强制串行执行，相应地就会导致操作性能的下降。

为了在保证逻辑正确的前提下，尽可能地提高队列在并发情况下的性能，Disruptor 采用

了“两阶段写入”的方法。在写入数据之前，先加锁申请批量的空闲存储单元，之后往队列

中写入数据的操作就不需要加锁了，写入的性能因此就提高了。Disruptor 对消费过程的改

造，跟对生产过程的改造是类似的。它先加锁申请批量的可读取的存储单元，之后从队列中

读取数据的操作也就不需要加锁了，读取的性能因此也就提高了。

你可能会觉得这个优化思路非常简单。实际上，不管架构设计还是产品设计，往往越简单的

设计思路，越能更好地解决问题。正所谓“大道至简”，就是这个意思。

课后思考

为了提高存储性能，我们往往通过分库分表的方式设计数据库表。假设我们有 8 张表用来

存储用户信息。这个时候，每张用户表中的 ID 字段就不能通过自增的方式来产生了。因为

这样的话，就会导致不同表之间的用户 ID 值重复。

为了解决这个问题，我们需要实现一个 ID 生成器，可以为所有的用户表生成唯一的 ID

号。那现在问题是，如何设计一个高性能、支持并发的、能够生成全局唯一 ID 的 ID 生成

器呢？

欢迎留言和我分享，也欢迎点击“请朋友读”，把今天的内容分享给你的好友，和他一起讨

论、学习。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 53 | 算法实战（二）：剖析搜索引擎背后的经典数据结构和算法

下一篇 55 | 算法实战（四）：剖析微服务接口鉴权限流背后的数据结构和算法

Smallfly
2019-01-30

 11

没有读过 Disruptor 的源码，从老师的文章理解，一个线程申请了一组存储空间，如果这
组空间还没有被完全填满之前，另一个线程又进来，在这组空间之后申请空间并添加数
据，之后第一组空间又继续填充数据，那在消费时如何保证队列是按照添加顺序读取的
呢？
 …
展开

想当上帝的...
2019-01-30

 6

为什么3到6没有完全写入前，7到9无法读取，不是两个写入操作吗

精选留言 (34)  写留言

老杨同志
2019-01-30

 5

尝试回答老师的思考题

1）分库分表也可以使用自增主键，可以设置增加的步长。8台机器分别从1、2、3。。开
始，步长8.
 从1开始的下一个id是9，与其他的不重复就可以了。 …
展开

Keep-Movi...
2019-01-30

 5

思考题：加锁批量生成ID，使用时就不用加锁了

展开

彳
2019-02-23

 4

disruptor使用环的数据结构，内存连续，初始化时就申请并设置对象，将原本队列的头尾
节点锁的争用转化为cas操作，并利用Java对象填充，解决cache line伪共享问题

且听疯吟
2019-03-20

 2

__sync_fetch_and_add操作即可实现原子自增的操作。

展开

futute
2019-04-12

 1

弱弱地问一下，后来老师补充过这节课的内容吗？我看完后，跟以前留言的同学有相同的
感觉。

belongcai...
2019-01-30

 1

看完还是有很多困惑（可能跟我不了解线程安全有关）

一是申请一段连续存储空间，怎么成为线程独享的呢？生产者ab分别申请后，消费者为啥
无法跨区域读取呢
二是这种方法应该是有实验证明效率高的，私下去了解下。

展开

作者回复: 这节课我抽空再补充下。不好意思。

神盾局闹别...
2019-01-30

 1

有个问题，按照老师所说，a线程只写1-3区块，b线程只写4-6块，假设a线程先写了块1，
切换到线程b，b写块4，然后再切回线程a，a写块2。虽然没有数据覆盖问题，但是最终块
1-6的顺序不是按写入先后顺序排布的，读取不是乱套了吗，怎么解决这个问题？求老师能
说的详细点。

展开

www.xnsms...
2019-05-15



感觉这个限流用的环形队列，又回到了上一节讲disrupter队列的问题一样，接口肯定是多
线程，多个线程同时在往队列生产和消费，会出现生产和消费冲突，还是要解决这个问
题……哈哈

Geek_c33c8...
2019-04-13



老师，线程池的实现是单个线程往队列插入任务，单个线程去队列去任务吗，所以不会处
理并发控制吗

作者回复: 这里讲的时候没涉及并发问题，实际上会有的

xuery
2019-04-11



项目中有使用过分布式id生成器，但是不知道具体是怎么实现的，参考今天的Disruptor的
思路：
1. id生成器相当于一个全局的生产者，可以提前生成一批id

2. 对于每一张表，可以类似于Disruptor的消费者思路，从id生成器中申请一批id，用作当
前表的id使用，当然申请一批id对于id生成器来说是需要加锁操作的

展开

www.xnsms...
2019-03-22



学storm的时候讲过里面的线程有个环形队列，以为这个课程会讲代码的实现，有点失望
啊，是不是实现起来太麻烦了

展开

zj
2019-03-20



循环队列，一个生产者和一个消费者也会有线程安全问题啊，在判断是否队列满了的时
候，得去tail和head的值。而没有锁就不能保证取到新的值

展开

QQ怪
2019-03-08



雪花算法可以根据不同机子生成不同的id

展开

cn
2019-02-15



申请了一段空间之后，只有写完才能够读取这段空间和后续空间，如果生产者挂了，是不
是读取就阻塞了？

漫漫越
2019-02-14



尝试回答老师的问题
1.最简单的办法就是加锁，但这样就不支持并发。
2.将所有生成唯一Id的请求放入队列中，队列每次取出数据来产生Id，优点是不需要加锁。
缺点是不支持并发。
老师有啥方法吗？求赐教

展开

左瞳
2019-02-13



两阶段写入没有代码还是看不懂

展开

🐱您的好...
2019-02-11



不同步长的自增主键还是会重复的，应该是使用唯一ID生成器将生成好的ID放到Disruptor
中，之后8个以加锁申请之后读取的方式获取相应的ID。

展开

郭小菜
2019-02-09



一直追老师的课程，每期的质量都很高，收获很多。但是这期确实有点虎头蛇尾，没有把
disruptor的实现原理讲得特别明白。不是讲得不好，只是觉得结尾有点突兀，信息量少
了。但是瑕不掩瑜，老师的课程总体质量绝对是杠杠的！

展开

作者回复: 你说的没错。这节课有点不详细，我抽空重新补充下。抱歉。

