
56 | 算法实战（五）：如何用学过的数据结构和算法实现一个短网址
系统？
2019-02-04 王争

数据结构与算法之美 进入课程

讲述：修阳
时长 15:16 大小 13.99M

短网址服务你用过吗？如果我们在微博里发布一条带网址的信息，微博会把里面的网址转化

成一个更短的网址。我们只要访问这个短网址，就相当于访问原始的网址。比如下面这两个

网址，尽管长度不同，但是都可以跳转到我的一个 GitHub 开源项目里。其中，第二个网

址就是通过新浪提供的短网址服务生成的。



1

2

原始网址：https://github.com/wangzheng0822/ratelimiter4j
短网址：http://t.cn/EtR9QEG

复制代码



 下载APP 



从功能上讲，短网址服务其实非常简单，就是把一个长的网址转化成一个短的网址。作为一

名软件工程师，你是否思考过，这样一个简单的功能，是如何实现的呢？底层都依赖了哪些

数据结构和算法呢？

短网址服务整体介绍

刚刚我们讲了，短网址服务的一个核心功能，就是把原始的长网址转化成短网址。除了这个

功能之外，短网址服务还有另外一个必不可少的功能。那就是，当用户点击短网址的时候，

短网址服务会将浏览器重定向为原始网址。这个过程是如何实现的呢？

为了方便你理解，我画了一张对比图，你可以看下。

从图中我们可以看出，浏览器会先访问短网址服务，通过短网址获取到原始网址，再通过原

始网址访问到页面。不过这部分功能并不是我们今天要讲的重点。我们重点来看，如何将长

网址转化成短网址？

如何通过哈希算法生成短网址？

我们前面学过哈希算法。哈希算法可以将一个不管多长的字符串，转化成一个长度固定的哈

希值。我们可以利用哈希算法，来生成短网址。



前面我们已经提过一些哈希算法了，比如 MD5、SHA 等。但是，实际上，我们并不需要这

些复杂的哈希算法。在生成短网址这个问题上，毕竟，我们不需要考虑反向解密的难度，所

以我们只需要关心哈希算法的计算速度和冲突概率。

能够满足这样要求的哈希算法有很多，其中比较著名并且应用广泛的一个哈希算法，那就是

MurmurHash 算法。尽管这个哈希算法在 2008 年才被发明出来，但现在它已经广泛应用

到 Redis、MemCache、Cassandra、HBase、Lucene 等众多著名的软件中。

MurmurHash 算法提供了两种长度的哈希值，一种是 32bits，一种是 128bits。为了让最

终生成的短网址尽可能短，我们可以选择 32bits 的哈希值。对于开头那个 GitHub 网址，

经过 MurmurHash 计算后，得到的哈希值就是 181338494。我们再拼上短网址服务的域

名，就变成了最终的短网址 http://t.cn/181338494（其中，http://t.cn 是短网址服务的域

名）。

1. 如何让短网址更短？

不过，你可能已经看出来了，通过 MurmurHash 算法得到的短网址还是很长啊，而且跟我

们开头那个网址的格式好像也不一样。别着急，我们只需要稍微改变一个哈希值的表示方

法，就可以轻松把短网址变得更短些。

我们可以将 10 进制的哈希值，转化成更高进制的哈希值，这样哈希值就变短了。我们知

道，16 进制中，我们用 A～E，来表示 10～15。在网址 URL 中，常用的合法字符有 0～

9、a～z、A～Z 这样 62 个字符。为了让哈希值表示起来尽可能短，我们可以将 10 进制的

哈希值转化成 62 进制。具体的计算过程，我写在这里了。最终用 62 进制表示的短网址就

是http://t.cn/cgSqq。

https://zh.wikipedia.org/wiki/Murmur%E5%93%88%E5%B8%8C
http://t.cn/
http://t.cn/cgSqq%E3%80%82


2. 如何解决哈希冲突问题？

不过，我们前面讲过，哈希算法无法避免的一个问题，就是哈希冲突。尽管 MurmurHash

算法，冲突的概率非常低。但是，一旦冲突，就会导致两个原始网址被转化成同一个短网

址。当用户访问短网址的时候，我们就无从判断，用户想要访问的是哪一个原始网址了。这

个问题该如何解决呢？

一般情况下，我们会保存短网址跟原始网址之间的对应关系，以便后续用户在访问短网址的

时候，可以根据对应关系，查找到原始网址。存储这种对应关系的方式有很多，比如我们自

己设计存储系统或者利用现成的数据库。前面我们讲到的数据库有 MySQL、Redis。我们

就拿 MySQL 来举例。假设短网址与原始网址之间的对应关系，就存储在 MySQL 数据库

中。

当有一个新的原始网址需要生成短网址的时候，我们先利用 MurmurHash 算法，生成短网

址。然后，我们拿这个新生成的短网址，在 MySQL 数据库中查找。

如果没有找到相同的短网址，这也就表明，这个新生成的短网址没有冲突。于是我们就将这

个短网址返回给用户（请求生成短网址的用户），然后将这个短网址与原始网址之间的对应

关系，存储到 MySQL 数据库中。



如果我们在数据库中，找到了相同的短网址，那也并不一定说明就冲突了。我们从数据库

中，将这个短网址对应的原始网址也取出来。如果数据库中的原始网址，跟我们现在正在处

理的原始网址是一样的，这就说明已经有人请求过这个原始网址的短网址了。我们就可以拿

这个短网址直接用。如果数据库中记录的原始网址，跟我们正在处理的原始网址不一样，那

就说明哈希算法发生了冲突。不同的原始网址，经过计算，得到的短网址重复了。这个时

候，我们该怎么办呢？

我们可以给原始网址拼接一串特殊字符，比如“[DUPLICATED]”，然后跟再重新计算哈希

值，两次哈希计算都冲突的概率，显然是非常低的。假设出现非常极端的情况，又发生冲突

了，我们可以再换一个拼接字符串，比如“[OHMYGOD]”，再计算哈希值。然后把计算

得到的哈希值，跟原始网址拼接了特殊字符串之后的文本，一并存储在 MySQL 数据库

中。

当用户访问短网址的时候，短网址服务先通过短网址，在数据库中查找到对应的原始网址。

如果原始网址有拼接特殊字符（这个很容易通过字符串匹配算法找到），我们就先将特殊字

符去掉，然后再将不包含特殊字符的原始网址返回给浏览器。

3. 如何优化哈希算法生成短网址的性能？

为了判断生成的短网址是否冲突，我们需要拿生成的短网址，在数据库中查找。如果数据库

中存储的数据非常多，那查找起来就会非常慢，势必影响短网址服务的性能。那有没有什么

优化的手段呢？

还记得我们之前讲的 MySQL 数据库索引吗？我们可以给短网址字段添加 B+ 树索引。这样

通过短网址查询原始网址的速度就提高了很多。实际上，在真实的软件开发中，我们还可以

通过一个小技巧，来进一步提高速度。

在短网址生成的过程中，我们会跟数据库打两次交道，也就是会执行两条 SQL 语句。第一

个 SQL 语句是通过短网址查询短网址与原始网址的对应关系，第二个 SQL 语句是将新生成

的短网址和原始网址之间的对应关系存储到数据库。

我们知道，一般情况下，数据库和应用服务（只做计算不存储数据的业务逻辑部分）会部署

在两个独立的服务器或者虚拟服务器上。那两条 SQL 语句的执行就需要两次网络通信。这

种 IO 通信耗时以及 SQL 语句的执行，才是整个短网址服务的性能瓶颈所在。所以，为了

提高性能，我们需要尽量减少 SQL 语句。那又该如何减少 SQL 语句呢？



我们可以给数据库中的短网址字段，添加一个唯一索引（不止是索引，还要求表中不能有重

复的数据）。当有新的原始网址需要生成短网址的时候，我们并不会先拿生成的短网址，在

数据库中查找判重，而是直接将生成的短网址与对应的原始网址，尝试存储到数据库中。如

果数据库能够将数据正常写入，那说明并没有违反唯一索引，也就是说，这个新生成的短网

址并没有冲突。

当然，如果数据库反馈违反唯一性索引异常，那我们还得重新执行刚刚讲过的“查询、写

入”过程，SQL 语句执行的次数不减反增。但是，在大部分情况下，我们把新生成的短网

址和对应的原始网址，插入到数据库的时候，并不会出现冲突。所以，大部分情况下，我们

只需要执行一条写入的 SQL 语句就可以了。所以，从整体上看，总的 SQL 语句执行次数会

大大减少。

实际上，我们还有另外一个优化 SQL 语句次数的方法，那就是借助布隆过滤器。

我们把已经生成的短网址，构建成布隆过滤器。我们知道，布隆过滤器是比较节省内存的一

种存储结构，长度是 10 亿的布隆过滤器，也只需要 125MB 左右的内存空间。

当有新的短网址生成的时候，我们先拿这个新生成的短网址，在布隆过滤器中查找。如果查

找的结果是不存在，那就说明这个新生成的短网址并没有冲突。这个时候，我们只需要再执

行写入短网址和对应原始网页的 SQL 语句就可以了。通过先查询布隆过滤器，总的 SQL 语

句的执行次数减少了。

到此，利用哈希算法来生成短网址的思路，我就讲完了。实际上，这种解决思路已经完全满

足需求了，我们已经可以直接用到真实的软件开发中。不过，我们还有另外一种短网址的生

成算法，那就是利用自增的 ID 生成器来生成短网址。我们接下来就看一下，这种算法是如

何工作的？对于哈希算法生成短网址来说，它又有什么优势和劣势？

如何通过 ID 生成器生成短网址？

我们可以维护一个 ID 自增生成器。它可以生成 1、2、3…这样自增的整数 ID。当短网址服

务接收到一个原始网址转化成短网址的请求之后，它先从 ID 生成器中取一个号码，然后将

其转化成 62 进制表示法，拼接到短网址服务的域名（比如http://t.cn/）后面，就形成了

最终的短网址。最后，我们还是会把生成的短网址和对应的原始网址存储到数据库中。

理论非常简单好理解。不过，这里有几个细节问题需要处理。

http://t.cn/


1. 相同的原始网址可能会对应不同的短网址

每次新来一个原始网址，我们就生成一个新的短网址，这种做法就会导致两个相同的原始网

址生成了不同的短网址。这个该如何处理呢？实际上，我们有两种处理思路。

第一种处理思路是不做处理。听起来有点无厘头，我稍微解释下你就明白了。实际上，相同

的原始网址对应不同的短网址，这个用户是可以接受的。在大部分短网址的应用场景里，用

户只关心短网址能否正确地跳转到原始网址。至于短网址长什么样子，他其实根本就不关

心。所以，即便是同一个原始网址，两次生成的短网址不一样，也并不会影响到用户的使

用。

第二种处理思路是借助哈希算法生成短网址的处理思想，当要给一个原始网址生成短网址的

时候，我们要先拿原始网址在数据库中查找，看数据库中是否已经存在相同的原始网址了。

如果数据库中存在，那我们就取出对应的短网址，直接返回给用户。

不过，这种处理思路有个问题，我们需要给数据库中的短网址和原始网址这两个字段，都添

加索引。短网址上加索引是为了提高用户查询短网址对应的原始网页的速度，原始网址上加

索引是为了加快刚刚讲的通过原始网址查询短网址的速度。这种解决思路虽然能满足“相同

原始网址对应相同短网址”这样一个需求，但是是有代价的：一方面两个索引会占用更多的

存储空间，另一方面索引还会导致插入、删除等操作性能的下降。

2. 如何实现高性能的 ID 生成器？

实现 ID 生成器的方法有很多，比如利用数据库自增字段。当然我们也可以自己维护一个计

数器，不停地加一加一。但是，一个计数器来应对频繁的短网址生成请求，显然是有点吃力

的（因为计数器必须保证生成的 ID 不重复，笼统概念上讲，就是需要加锁）。如何提高 ID

生成器的性能呢？关于这个问题，实际上，有很多解决思路。我这里给出两种思路。

第一种思路是借助第 54 节中讲的方法。我们可以给 ID 生成器装多个前置发号器。我们批

量地给每个前置发号器发送 ID 号码。当我们接受到短网址生成请求的时候，就选择一个前

置发号器来取号码。这样通过多个前置发号器，明显提高了并发发号的能力。



第二种思路跟第一种差不多。不过，我们不再使用一个 ID 生成器和多个前置发号器这样的

架构，而是，直接实现多个 ID 生成器同时服务。为了保证每个 ID 生成器生成的 ID 不重

复。我们要求每个 ID 生成器按照一定的规则，来生成 ID 号码。比如，第一个 ID 生成器只

能生成尾号为 0 的，第二个只能生成尾号为 1 的，以此类推。这样通过多个 ID 生成器同

时工作，也提高了 ID 生成的效率。



总结引申

今天，我们讲了短网址服务的两种实现方法。我现在来稍微总结一下。

第一种实现思路是通过哈希算法生成短网址。我们采用计算速度快、冲突概率小的

MurmurHash 算法，并将计算得到的 10 进制数，转化成 62 进制表示法，进一步缩短短

网址的长度。对于哈希算法的哈希冲突问题，我们通过给原始网址添加特殊前缀字符，重新

计算哈希值的方法来解决。

第二种实现思路是通过 ID 生成器来生成短网址。我们维护一个 ID 自增的 ID 生成器，给每

个原始网址分配一个 ID 号码，并且同样转成 62 进制表示法，拼接到短网址服务的域名之

后，形成最终的短网址。

课后思考

1. 如果我们还要额外支持用户自定义短网址功能（http//t.cn/{用户自定部分}），我们又该

如何改造刚刚的算法呢?

2. 我们在讲通过 ID 生成器生成短网址这种实现思路的时候，讲到相同的原始网址可能会对

应不同的短网址。针对这个问题，其中一个解决思路就是，不做处理。但是，如果每个

请求都生成一个短网址，并且存储在数据库中，那这样会不会撑爆数据库呢？我们又该

如何解决呢？



今天是农历的大年三十，我们专栏的正文到这里也就全部结束了。从明天开始，我会每天发

布一篇练习题，内容针对专栏涉及的数据结构和算法。从初一到初七，帮你复习巩固所学知

识，拿下数据结构和算法，打响新年进步的第一枪！明天见！

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 55 | 算法实战（四）：剖析微服务接口鉴权限流背后的数据结构和算法

下一篇 春节7天练 | Day 1：数组和链表

Smallfly
2019-02-04

 35

随着新年的到来，我们的算法专栏也到了尾声。有点怀念那段时间工作不忙，一天能有好
几个小时，阅读和思考算法专栏。 
 
专栏给我带来的收获不仅仅是数据结构和算法的知识。在这之前虽然也每天学习，但总是
东一块西一块，没有系统和脉络，一段时间之后，看似学了很多，但并没有什么效果。 …
展开

精选留言 (31)  写留言



TryTs
2019-02-04

 5

兴趣是最好的老师，这话没有错。如果没有兴趣那就去找。就我个人看法，很多时候一开
始不一定非要搞那么枯燥的东西，做一些有趣的东西，慢慢培养自己的兴趣，自己就会有
好奇心去往深处学习，如果以来就弄那些很“艰深”的东西，可能不能坚持多久，“从入
门到放弃”。学习老师这个专栏，我最大的收获就在于老师把平时课上那些算法讲活了，
应用到具体场景之中，相较于一些为了练习而联系的习题，这让我更能体会到算法之美…
展开

李
2019-02-04

 5

以前觉得数据结构和算法很难，学了之后，确实也难，但通过系统学习，心中有了一张完
整的地图，以后只要不断反复看，反复学习，反复练习，一定能真正融合贯通。 
另外，最大的感受是学了数据结构和算法后，看其它中间件和框架的源代码，发现大部分
底层就是数据结构和算法。感觉练了九阳神功一样，学习其它功夫快了很多

展开

Sharry
2019-02-11

 4

问题一: 
- 尝试将用户 自定义后的短网址 和 原网址的映射关系 存入数据库 
  - 插入成功, 则提示用户短网址生成成功 
  - 若插入失败, 说明存在冲突, 则进行判重处理 
     - 若数据库中短网址对应的原网址与当前正在处理的相同, 提示该短网址有效  …
展开

微秒
2019-02-04

 3

坚持到了最后，虽然只看不写，但也加深了对数据结构的认识，接下来刷第二遍的时候再
加深代码实践。最后祝大家新年快乐！顺便说句，老师的这个专栏真的很良心，谢谢了！

.&#47;...
2019-03-17

 2

第二题:id生成器，不处理，会导致相同的长域名重复。有个解决方案，长域名设置唯一的



限制，在重复的情况下，插入表失败后，查询已经存在的长域名，对应的短域名。返回该
短域名

小美
2019-02-09

 2

王老师短网址有什么作用吗？ 我上网查了下理由不能说服我？ 
可能网上说得比较浅显，王老师方便指导下吗？

展开

作者回复: 比如微博里，网址如果很长，看起来不美观。缩短成短网址之后，短短的，不占空间，

不是更好看些吗：）

一涛
2019-02-04

 2

1. 首先查询“用户自定义部分”是否与已经生成的短网址冲突，如果冲突，只能提示用户
进行修改。如果不冲突，将“用户自定义部分”和对应的原始网址写入数据库即可。 
 
2. 给原始网址加唯一索引。如果写入异常，说明原始网址已经存在，再根据原始网址查询
一次，取出短网址返回给用户。 …
展开

wahaha
2019-03-09

 1

16进制应该是A到F(不是E)表示10到15，文字和朗读中都弄错了

实验室清洁...
2019-02-13

 1

应该是16进制吧，62进制？？？

展开

作者回复: 是的，62进制会更短些



纯洁的憎恶
2019-02-07

 1

1.短网址的自定义部分是要展示给用户的。是否可以把自定义部分作为第三个字段存入数
据库。如果不同用户对相同原网址申请短网址自定义部分不同。要么不允许这种行为，否
则就得把自定义部分与原网址拼接输入哈希函数，以实现区分。

展开

纯洁的憎恶
2019-02-07

 1

通过哈希函数，在长网址字符串基础上，生成短网址哈希值。将哈希值从10进制提升至62
进制，进一步缩短短网址长度。为了通过短网址回溯到原网址，需要建立长短网址的对应
关系，存入数据库。 
 
为了避免散列冲突，需要在在建立新的对应关系时，查询数据库中是否已有短网址，若…
展开

与非
2019-02-04

 1

最后一课在一年的最后一天结束，这也算辞旧迎新了吧～希望老师能在最后能出个课后思
考题的总结～

想当上帝的...
2019-02-04

 1

用户自定义的，可以将用户的id拼接到hash前的网址上

展开

极客大白
2019-05-10



打卡打卡,虽然很慢,但终于还是跟着老师的课程一节节的啃过来了!也算完成了当初订阅专栏
的一个小目标.不过其中还是有很多不清楚的地方,自己动手实现代码也遇到了一些困难!下一
步就是结合实际工作,二刷专栏和其他学习资料更加深入的学习了!加油! 感谢王争老师的专
栏让我有信心继续把数据结构与算法啃下去!

展开



森林2019-04-25 

课程终于输完了，问问小争哥画图软件是？

展开

作者回复: ipad paper

狒狒
2019-04-24



终于看完了，打个卡，中途好多代码没实现，二刷补上

展开

刘強
2019-04-12



哈哈 2019年4月12日晚上2点 终于把专栏刷完了。开始跟着学发现不到一半，就跟不上节
奏了，又从头开始看。开始时间这么长了，估计留言都没人看了，但还是留个言。看到有
个兄弟昨天也留言了，还好没有放弃，虽然慢，但是跟上来了。 
 
虽然学完了，但我感觉学算法和懂算法之间的鸿沟还是相当难跨越的。我们可能学完后…
展开

作者回复: 兄弟 对自己要求太高了

xuery
2019-04-11



追到这里，终于有底气在简历上写上一行熟悉各种数据结构与算了^_^. 
感谢王争老师，下一步就是利用leetcode进一步提升自己的算法功底， 
将熟悉变成精通

展开

xuery
2019-04-11



1. 相当于用户自己指定算法生成短链，现在要考虑的就是短链冲突的问题，按照之前的思
路可以先利用布隆过滤器判断是否冲突，不冲突，再将短链和对应的原始网址插入数据库



（前提是数据库短链加了唯一索引）；如果冲突了就要提示用户重新输入短链了 
2. 显然通过在原始网址字段中加唯一索引是不行的，这样数据库报错的时候，无法区分是
原始网址已经有了还是短链网址冲突了；这个我想到的办法就是针对原始网址可以构建…
展开


