第3章 堆栈和队列

程序3.1 堆栈类

#include <iostream.h>
template <class T>

class Stack

{ //栈类Stack是一个模板抽象类，其成员函数为纯虚函数，未定义数据成员

public:

 virtual bool Push(T x)=0;

virtual bool Pop()=0;
 virtual bool Top(T &x) const=0;

……
};

程序3.2 顺序栈类

#include "stack.h"
template <class T>

class SeqStack:public Stack<T>

{

 public:

 SeqStack(int mSize);

 ~SeqStack() { delete []s; }

 bool IsEmpty() const { return top==-1; }

 bool IsFull() const { return top==maxTop; }

 bool Top(T &x) const;

 bool Push(T x);

 bool Pop();

 void Clear() { top=-1; }

 private:

 int top; //栈顶指针

 int maxTop; //最大栈顶指针
T *s;

};

template <class T>

SeqStack<T>::SeqStack(int mSize)

{

maxTop=mSize-1;

 s=new T[mSize];

 top=-1;

}

template <class T>

bool SeqStack<T>::Top(T &x) const

{

if(IsEmpty()) {

 cout<<"Empty"<<endl; return false;

}
x=s[top];return true;

}

template <class T>

bool SeqStack<T>::Push(T x)

{

if(IsFull()){ //溢出处理

 cout<<"Overflow"<<endl; return false;

}

 s[++top]=x; return true;

}

template <class T>

bool SeqStack<T>::Pop()

{

if(IsEmpty()) { //空栈处理

cout<<"Underflow"<<endl; return false;

}

 top--; return true;

}

程序3.3 队列类

#include <iostream.h>
template <class T>

class Queue

{

public:

 virtual bool IsEmpty() const=0;

 virtual bool IsFull() const=0;

 virtual bool Front(T& x) const=0;

 virtual bool EnQueue(T x)=0;

virtual bool DeQueue()=0;
};

程序3.4 循环队列类
#include "queue.h"

template <class T>

class SeqQueue:public Queue<T>

{

public:

 SeqQueue(int mSize);

 ~SeqQueue(){ delete [] q; };

 bool IsEmpty() const {return front==rear;}

 bool IsFull() const {return (rear+1) % maxSize==front;}

 bool Front(T& x) const;

 bool EnQueue(T x);

bool DeQueue();
private:

 int front,rear;

 int maxSize;

 T *q;

};

template <class T>

SeqQueue<T>::SeqQueue(int mSize)

{

maxSize=mSize;

 q=new T[maxSize];

 front=rear=0;

}

template <class T>

bool SeqQueue<T>::Front(T& x) const

{

if (IsEmpty()){ //空队列处理

 cout<<"empty"<<endl; return false;

 }

 x=q[(front+1) % maxSize];

 return true;

}

template <class T>

bool SeqQueue<T>::EnQueue(T x)

{

if (IsFull()){ //溢出处理

 cout<<"Full"<<endl; return false;

 }

 q[(rear=(rear+1) % maxSize)]=x;

 return true;

}

template <class T>

bool SeqQueue<T>::DeQueue()

{

if (IsEmpty()) { //空队列处理

 cout<<"Underflow"<<endl; return false;

 }

 front=(front+1) % maxSize;

 return true;

}
程序3.5 计算器类
#include "seqstack.h"

#include <math.h>

class Calculator

{

public:

 Calculator(int maxSize):S(maxSize) {};

 void Run(); //从输入流逐个读入字符，做相应的运算，输出结果
 void Clear(){s.Clear();}
private:

 SeqStack<double> s; //声明存放操作数的栈对象
 void PushOperand(double); //操作数进栈

 bool GetOperands(double &, double &); //从栈中弹出2个操作数
 void DoOperator(char); //根据操作符做相应的运算

};

void Calculator::PushOperand(double op)

{

 s.Push(op);

}

bool Calculator::GetOperands(double &op1, double &op2)

{

if (!s.Top(op1)){

cerr<<"Missing operand!"<<endl; return false;

 }

 s.Pop();

 if (!s.Top(op2)){

 cerr<<"Missing operand!"<<endl; return false;

 }

 s.Pop(); return true;

}

void Calculator::DoOperator(char oper)

{

bool result;

 double oper1,oper2;

 result=GetOperands(oper1,oper2); //从栈中弹出2个操作数

 if (result)

 switch(oper) //根据操作符做相应的运算，先出栈的操作数oper1

 { //放在操作符的右边，后出栈的oper2放在左边

case '+': s.Push(oper2+oper1); break;

 case '-': s.Push(oper2-oper1); break;

 case '*': s.Push(oper2*oper1); break;

 case '/': if (fabs(oper1)<1e-6) { //如果分母为0，则做出错处理

cerr<<"Divide by 0!"<<endl;

 Clear();

}

 else s.Push(oper2/oper1);break;

 case '^': s.Push(pow(oper2,oper1));break;

 }

 else Clear();

}

void Calculator::Run()

{

 char c;double newop;

 while (cin>>c,c!='#') { //从输入流试读入一个字符，遇结束符结束

 switch(c) { //读入的字符做如下处理

case '+':

 case '-':

 case '*':

 case '/':

 case '^': DoOperator(c); break; //是操作符则进行相应的计算
 default: cin.putback(c); //如不是操作符，则将试读入的字符放回输入流

 cin>>newop; //读入一个操作数

 PushOperand(newop); break; //操作数进栈
 }

 }

 if(S.Top(newop)) cout<<newop<<endl; //取栈顶元素，得结果输出

}

程序3.6 中缀表达式转换为后缀表达式

void InfixToPostfix()

{

SeqStack <char> s(SIZE);

 char ch,y; s.Push('#');

 while (cin>>ch,ch!='#') {

if (isdigit(ch)||isalpha(ch)) cout<<ch; //扫描到操作数直接输出

 else if (ch==')') //扫描到右括号时的处理

 for (s.Top(y), s.Pop(); y!='('; s.Top(y), s.Pop()) cout<<y;

 else { //扫描到其它操作符时的处理

 for (s.Top(y),s.Pop();icp(ch)<isp(y);s.Top(y),s.Pop()) //弹出栈顶操作符

 cout<<y ; //刚弹出的栈顶操作符的优先级高时输出

 s.Push(y); //当刚弹出的栈顶操作符的优先级低时，将其重新压回栈中

s.Push(ch); //然后扫描到的操作符进栈

 }

 }

 while (!s.IsEmpty()){ //输出栈中剩余操作符

 s.Top(y); s.Pop();

 if (y!='#') cout<<y;

 }

 cout<<endl;

}
 程序3.7 计算斐波那契级数

 long Fib(long n)

 {

 if(n<=1) return n;

 return Fib(n-2)+Fib(n-1);

 }
 程序3.8 输出数组元素的递归函数
 void rsum(int list[], int n)

 {

 if(--n>=0) {

 cout<<list[n]<<" ";

 rsum(list, n); //尾递归

 }

 }
程序3.9 程序3.8的迭代函数

 void sum(int list[], int n)

 {

 while(--n>=0) //用循环消除尾递归

 cout<<list[n]<<" ";

 }

PAGE
7

