第8章 跳表和散列表
程序8.7 散列表类

template<class T >

class HashTable:public DynamicSet<T>

{

public:

HashTable(int divisor=11);

~HashTable(){delete[]ht;delete[] empty;}

ResultCode Search(T& x)const;

ResultCode Insert(T& x);

ResultCode Remove(T& x);

 (
private:

ResultCode Find(T& x,int& pos)const;

int M;

T *ht;

bool* empty;

};

template <class T>

HashTable<T>::HashTable(int divitor)

{

M=divitor

;

ht=new T[M];empty=new bool[M];

for (int i=0;i<M;i++)empty[i]=true;

for (i=0;i<M;i++) ht[i]=NeverUsed;

}

程序8.8 线性探查散列表的搜索

template <class T>

ResultCode HashTable<T>::Find(T& x,int& pos)const

{

pos=h(x); //设h为散列函数，0(h(x)<M

int i=pos,j=-1;

do{

 if(ht[pos]==NeverUsed && j==-1) j=pos; //记录首次遇到空值的位置

if(empty[pos]) break; //表中没有与x有相同关键字的元素

if(ht[pos]==x) { //ht[pos]的关键字值与x的关键字值相同

x=ht[pos];return Success; //将元素ht[pos]整体赋值给x，搜索成功

}

 pos=(pos+1) % M;

 }while (pos!=i); //已搜索完整个散列表

if (j==-1) return Overflow; //表已满

 pos=j;return NotPresent; //设置首次遇到的空值位置，并返回

}
template <class T>

ResultCode HashTable<T>:: Search(T& x)const

{

int pos;

if(Find(x,pos)==Success) return Success;

return NotPresent;

}
程序8.9 线性探查散列表的插入
template <class T>

ResultCode HashTable<T>:: Insert(T& x)

{

int pos;

ResultCode result=Find(x,pos);

if(result==NotPresent){ //如果原表未满且表中不包含重复元素

 ht[pos]=x;empty[pos]=false; //将新元素插入首遇的空值处

 return Success;

}

if(result==Success)return Duplicate; //指示原表中存在重复元素

 return Overflow; //指示原表已满

}
程序8.10线性探查散列表的删除

template <class T>

ResultCode HashTable<T>:: Remove(T& x)

{

int pos;

if(Find(x,pos)==Success) {

ht[pos]=NeverUsed;return Success;

}

return NotPresent;

}

1
3

