

数据类型

C是有类型的语⾔言
• C语⾔言的变量，必须：

• 在使⽤用前定义，并且
• 确定类型

• C以后的语⾔言向两个⽅方向发展：

• C++/Java更强调类型，对类型的检查更严格

• JavaScript、Python、PHP不看重类型，甚⾄至不需
要事先定义

类型安全

• ⽀支持强类型的观点认为明确的类型有助于尽早发现程
序中的简单错误

• 反对强类型的观点认为过于强调类型迫使程序员⾯面对
底层、实现⽽而⾮非事务逻辑

• 总的来说，早期语⾔言强调类型，⾯面向底层的语⾔言强调
类型

• C语⾔言需要类型，但是对类型的安全检查并不⾜足够

C语⾔言的类型
• 整数

• char、short、int、long、long long

• 浮点数

• float、double、long double

• 逻辑

• bool

• 指针
• ⾃自定义类型

蓝⾊色的是C99的类型

类型有何不同
• 类型名称：int、long、double

• 输⼊入输出时的格式化：%d、%ld、%lf

• 所表达的数的范围：char < short < int < float <
double

• 内存中所占据的⼤大⼩小：1个字节到16个字节

• 内存中的表达形式：⼆二进制数（补码）、编码

sizeof

• 是⼀一个运算符，给出某个类型或变量在内存中所占据
的字节数

• sizeof(int)

• sizeof(i)

sizeof

• 是静态运算符，它的结果在编译时刻就决定了

• 不要在sizeof的括号⾥里做运算，这些运算不会做的

整数

整数

• char

• short

• int

• long

• long long

整数

• char：1字节（8⽐比特）

• short：2字节

• int：取决于编译器（CPU），通常的意义是“1个字”

• long：取决于编译器（CPU），通常的意义是“1个字”

• long long：8字节

*整数的内部表达

• 计算机内部⼀一切都是⼆二进制

• 18 —> 00010010

• 0 —> 00000000

• -18 —> ?

*如何表⽰示负数

• ⼗十进制⽤用“-”来表⽰示负数，在做计算的时候

• 加减是做相反的运算
• 乘除时当作正数，计算完毕后对结果的符号取反

*⼆二进制负数
• 1个字节可以表达的数：

• 00000000 — 11111111 (0-255)

• 三种⽅方案：

1. 仿照⼗十进制，有⼀一个特殊的标志表⽰示负数

2. 取中间的数为0，如1000000表⽰示0，⽐比它⼩小的是
负数，⽐比它⼤大的是正数

3. 补码

*补码
• 考虑-1，我们希望-1 + 1 —> 0。如何能做到？

• 0 —> 00000000

• 1 —> 00000001

• 11111111 ＋ 00000001 —> 100000000

• 因为0 - 1 —> -1，所以，-1 =

• (1)00000000 － 00000001 —> 11111111

• 11111111被当作纯⼆二进制看待时，是255，被当作补码看待时是
-1

• 同理，对于-a，其补码就是0-a，实际是2n - a，n是这种类型的位数

补码的意义就是
拿补码和原码可

以加出⼀一个溢出
的“零”

数的范围
• 对于⼀一个字节（8位），可以表达的是：

• 00000000 - 11111111

• 其中

• 00000000 —> 0

• 11111111 ~ 10000000 —> -1 ~ -128

• 00000001 ~ 01111111 —> 1 ~ 127

整数的范围

• char：1字节：-128 ~ 127

• short：2字节：-32768 ~ 32767

• int：取决于编译器（CPU），通常的意义是“1个字”

• long：4字节

• long long：8字节

unsigned
• 在整形类型前加上unsigned使得它们成为⽆无符号的整
数

• 内部的⼆二进制表达没变，变的是如何看待它们
• 如何输出

• 11111111

• 对于char，是-1

• 对于unsigned char，是255

• 如果⼀一个字⾯面量常数想要表达⾃自⼰己是unsigned，可以
在后⾯面加u或U

• 255U

• ⽤用l或L表⽰示long(long)

• *unsigned的初衷并⾮非扩展数能表达的范围，⽽而是为
了做纯⼆二进制运算，主要是为了移位

unsigned

整数越界

• 整数是以纯⼆二进制⽅方式进⾏行计算的，所以：

• 11111111 + 1 —> 100000000 —> 0

• 01111111 + 1 —> 10000000 —> -128

• 10000000 - 1 —> 01111111 —> 127

整数的输⼊入输出

• 只有两种形式：int或long long

• %d：int

• %u：unsigned

• %ld：long long

• %lu：unsigned long long

8进制和16进制
• ⼀一个以0开始的数字字⾯面量是8进制

• ⼀一个以0x开始的数字字⾯面量是16进制

• %o⽤用于8进制，%x⽤用于16进制

!

• 8进制和16进制只是如何把数字表达为字符串，与内
部如何表达数字⽆无关

＊8进制和16进制

• 16进制很适合表达⼆二进制数据，因为4位⼆二进制正好
是⼀一个16进制位

• 8进制的⼀一位数字正好表达3位⼆二进制

• 因为早期计算机的字⻓长是12的倍数，⽽而⾮非8

选择整数类型
• 为什么整数要有那么多种？

• 为了准确表达内存，做底层程序的需要

• 没有特殊需要，就选择int

• 现在的CPU的字⻓长普遍是32位或64位，⼀一次内存读写就是
⼀一个int，⼀一次计算也是⼀一个int，选择更短的类型不会更
快，甚⾄至可能更慢

• ＊现代的编译器⼀一般会设计内存对⻬齐，所以更短的类型实
际在内存中有可能也占据⼀一个int的⼤大⼩小（虽然sizeof告诉
你更⼩小）

• unsigned与否只是输出的不同，内部计算是⼀一样的

浮点数

浮点类型

类型 字⻓长 范围 有效数字

float 32 ±(1.20x10
0,±inf,nan 7

double 64 ±(2.2x10
0,±inf,nan 15

浮点的输⼊入输出
类型 scanf printf

float %f %f, %e

double %lf %f,%e

-5.67E+16

可选的 + 或 - 符号

⼩小数点也是可选的

可以⽤用e或E

符号可以是-或+也可以省略（表⽰示+）

整个词不能有空格

科学计数法

• 在%和f之间加上.n可以指定输出⼩小数点后⼏几位，这样
的输出是做4舍5⼊入的

• printf("%.3f\n", -0.0049);

• printf("%.30f\n", -0.0049);

• printf("%.3f\n", -0.00049);

输出精度

超过范围的浮点数

• printf输出inf表⽰示超过范围的浮点数：±∞

• printf输出nan表⽰示不存在的浮点数

浮点运算的精度

http://www.guokr.com/article/27173/

Android计算器低级错误？都是二进制惹的祸！

• f1 == f2可能失败	

• fabs(f1-f2) < 1e-12

• 带⼩小数点的字⾯面量
是double⽽而⾮非float

• float需要⽤用f或F后缀来表明⾝身份

http://www.guokr.com/article/27173/

＊浮点数的内部表达

• 浮点数在计算时是由专⽤用的硬件部件实现的

• 计算double和float所⽤用的部件是⼀一样的

图⽚片来源：wikipedia.org

http://wikipedia.org

选择浮点类型

• 如果没有特殊需要，只使⽤用double

• 现代CPU能直接对double做硬件运算，性能不会⽐比
float差，在64位的机器上，数据存储的速度也不⽐比
float慢

字符

字符类型

• char是⼀一种整数，也是⼀一种特殊的类型：字符。这是
因为：

• ⽤用单引号表⽰示的字符字⾯面量：'a', '1'

• ''也是⼀一个字符

• printf和scanf⾥里⽤用%c来输⼊入输出字符

字符的输⼊入输出
• 如何输⼊入'1'这个字符给char c？

• scanf("%c", &c);—>1

• scanf("%d", &i); c=i; —>49

• '1'的ASCII编码是49，所以当c==49时，它代表'1'

• printf("%i %c\n", c,c);

• ⼀一个49各⾃自表述！

混合输⼊入

• 有何不同？

• scanf("%d %c", &i, &c);

• scanf("%d%c", &i, &c);

字符计算

• ⼀一个字符加⼀一个数字得到ASCII码表中那个数之后的
字符

• 两个字符的减，得到它们在表中的距离

⼤大⼩小写转换

• 字⺟母在ASCII表中是顺序排列的

• ⼤大写字⺟母和⼩小写字⺟母是分开排列的，并不在⼀一起

• ‘a’-‘A’可以得到两段之间的距离，于是

• a+’a’-‘A”可以把⼀一个⼤大写字⺟母变成⼩小写字⺟母，⽽而

• a+’A’-‘a’可以把⼀一个⼩小写字⺟母变成⼤大写字⺟母

逃逸字符

• ⽤用来表达⽆无法印出来的控制字符或特殊字
符，它由⼀一个反斜杠“\”开头，后⾯面跟上另
⼀一个字符，这两个字符合起来，组成了⼀一
个字符

逃逸字符
字符 意义 字符 意义

\b 回退⼀一格 \" 双引号

\t 到下⼀一个表格位 \' 单引号

\n 换⾏行 \\ 反斜杠本⾝身

\r 回⻋车

回⻋车换⾏行
• 源⾃自打字机的动作

回⻋车换⾏行

制表位

• 每⾏行的固定位置	

• ⼀一个\t使得输出从下⼀一个制表位开始	

• ⽤用\t才能使得上下两⾏行对⻬齐

逻辑类型

• #include <stdbool.h>	

• 之后就可以使⽤用bool和true、false

bool

bool的运算

• bool实际上还是以int的⼿手段实现的，所以
可以当作int来计算	

• 也只能当作int来输⼊入输出

类型转换

⾃自动类型转换

• 当运算符的两边出现不⼀一致的类型时，会⾃自动转换成
较⼤大的类型

• ⼤大的意思是能表达的数的范围更⼤大

• char —> short —> int —> long —> long long

• int —> float —> double

⾃自动类型转换

• 对于printf，任何⼩小于int的类型会被转换成int；float会
被转换成double

• 但是scanf不会，要输⼊入short，需要%hd

强制类型转换
• 要把⼀一个量强制转换成另⼀一个类型（通常是较⼩小的类
型），需要：

• (类型)值

• ⽐比如：

• (int)10.2

• (short)32

• 注意这时候的安全性，⼩小的变量不总能表达⼤大的量

• (short)32768

• 只是从那个变量计算出了⼀一个新的类型
的值，它并不改变那个变量，⽆无论是值
还是类型都不改变

强制类型转换

• 强制类型转换的优先级⾼高于四则运算
int a = 5;	
int b = 6;	
double d = (double)(a / b);

double a = 1.0;	
double b = 2.0;	
int i = (int)a / b; int i = (int)(a / b);

