
函数原型

函数先后关系
• 像这样把sum()写在上⾯面，是因为：

• C的编译器⾃自上⽽而下顺序分析你的代码

• 在看到sum(1,10)的时候，它需要知道
sum()的样⼦子

• 也就是sum()要⼏几个参数，每个参数的类型
如何，返回什么类型

• 这样它才能检查你对sum()的调⽤用是否正确

如果不知道

• 也就是把要调⽤用的函数放到
下⾯面了

• 旧标准会假设你所调⽤用的函
数所有的参数都是int，返回
也是int

• 如果恰好不对...

函数原型
• 函数头，以分号“;”结尾，就构成了函数的原型

• 函数原型的⺫⽬目的是告诉编译器这个函数⻓长什么样
• 名称
• 参数（数量及类型）
• 返回类型

• 旧标准习惯把函数原型写在调⽤用它的函数⾥里⾯面
• 现在⼀一般写在调⽤用它的函数前⾯面
• 原型⾥里可以不写参数的名字，但是⼀一般仍然写上

函数原型

根据原型判断

实际的函数头

参数传递

调⽤用函数
• 如果函数有参数，调⽤用函数时必须传递给它数量、
类型正确的值

• 可以传递给函数的值是表达式的结果，这包括：
• 字⾯面量
• 变量
• 函数的返回值
• 计算的结果

类型不匹配？
• 调⽤用函数时给的值与参数的类型不匹配是C语⾔言传统
上最⼤大的漏洞

• 编译器总是悄悄替你把类型转换好，但是这很可能不
是你所期望的

• 后续的语⾔言，C++/Java在这⽅方⾯面很严格

传过去的是什么？

• 这样的代码能交换a和b的值吗？
C语⾔言在调⽤用函数

时，永远只能传值
给函数

传值
• 每个函数有⾃自⼰己的变量空间，参数也位于这个独
⽴立的空间中，和其他函数没有关系

• 过去，对于函数参数表中的参数，叫做“形式参
数”，调⽤用函数时给的值，叫做“实际参数”

• 由于容易让初学者误会实际参数就是实际在函数
中进⾏行计算的参数，误会调⽤用函数的时候把变量
⽽而不是值传进去了，所以我们不建议继续⽤用这种
古⽼老的⽅方式来称呼它们

• 我们认为，它们是参数和值的关系

形参

形参

实参

参数

值

参数

本地变量

本地变量

• 函数的每次运⾏行，就产⽣生了⼀一个独⽴立的变量空间，在
这个空间中的变量，是函数的这次运⾏行所独有的，称
作本地变量

• 定义在函数内部的变量就是本地变量
• 参数也是本地变量

变量的⽣生存期和作⽤用域

• ⽣生存期：什么时候这个变量开始出现了，到什么时候
它消亡了

• 作⽤用域：在（代码的）什么范围内可以访问这个变量
（这个变量可以起作⽤用）

• 对于本地变量，这两个问题的答案是统⼀一的：⼤大括号
内——块

本地变量的规则
• 本地变量是定义在块内的

• 它可以是定义在函数的块内
• 也可以定义在语句的块内
• 甚⾄至可以随便拉⼀一对⼤大括号来定义变量

• 程序运⾏行进⼊入这个块之前，其中的变量不存在，离开这个块，其中的变量
就消失了

• 块外⾯面定义的变量在⾥里⾯面仍然有效
• 块⾥里⾯面定义了和外⾯面同名的变量则掩盖了外⾯面的
• 不能在⼀一个块内定义同名的变量
• 本地变量不会被默认初始化
• 参数在进⼊入函数的时候被初始化了

其他细节

没有参数时

• void f(void);

• 还是

• void f();

• 在传统C中，它表⽰示f函数的参数表未知，并不表⽰示
没有参数

逗号运算符？

• 调⽤用函数时的逗号和逗号运算符怎么区分？
• 调⽤用函数时的圆括号⾥里的逗号是标点符号，不是运算
符

• f(a,b)

• f((a,b))

函数⾥里的函数？

• C语⾔言不允许函数嵌套定义

这是什么？

• int i,j,sum(int a, int b);

• return (i);

关于main
• int main()也是⼀一个函数

• 要不要写成int main(void)？

• return的0有⼈人看吗？

• Windows：if errorlevel 1 …

• Unix Bash：echo $?

• Csh：echo $status

