
结构

声明结构类型

初学者最常⻅见的
错误：漏了这个分号！

在函数内/外？

• 和本地变量⼀一样，在函数内部声明
的结构类型只能在函数内部使⽤用	

• 所以通常在函数外部声明结构类型，
这样就可以被多个函数所使⽤用了

声明结构的形式
 struct point {	

 int x;	

 int y;	

 };	

!

struct point p1, p2;	

!

p1 和 p2 都是point	

⾥里⾯面有x和y的值

struct {	

 int x;	

 int y;	

} p1, p2;	

!

p1 和 p2都是⼀一种	

⽆无名结构，⾥里⾯面有	

x和y

struct point {	

 int x;	

 int y;	

} p1, p2;	

!

p1和p2都是point	

⾥里⾯面有x和y的值t

对于第⼀一和第三种形式，都声明了结构point。但是第⼆二种形式没有声明point，只是定义了两个变量

11

23

2007

struct date today;	

today.month=06；	

today.day=19;	

today.year=2005;

month	

!

day	

!

year

结构变量

结构的初始化

结构成员
• 结构和数组有点像	

• 数组⽤用[]运算符和下标访问其成员	

• a[0] = 10;	

• 结构⽤用.运算符和名字访问其成员	

• today.day	

• student.firstName	

• p1.x	

• p1.y

结构运算

• 要访问整个结构，直接⽤用结构变量的名字	

• 对于整个结构，可以做赋值、取地址，也可以
传递给函数参数	

• p1 = (struct point){5, 10};	

 // 相当于p1.x = 5;
p1.y = 10;	

• p1 = p2;	

 	

 // 相当于p1.x = p2.x; p1.y = p2.y;

数组⽆无法做这两种
运算！

复合字⾯面量

• today = (struct date) {9,25,2004};	

• today = (struct date) {.month=9, .day=25,
year=2004};

结构指针

• 和数组不同，结构变量的名字并不是
结构变量的地址，必须使⽤用&运算符	

• struct date *pDate = &today;

结构与函数

结构作为函数参数

• 整个结构可以作为参数的值传⼊入函数	

• 这时候是在函数内新建⼀一个结构变量，并
复制调⽤用者的结构的值	

• 也可以返回⼀一个结构	

• 这与数组完全不同

输⼊入结构
• 没有直接的⽅方式可以⼀一次scanf⼀一
个结构	

• 如果我们打算写⼀一个函数来读⼊入结构	

• —>	

• 但是读⼊入的结构如何送回来呢？	

• 记住C在函数调⽤用时是传值的	

• 所以函数中的p与main中的y是不
同的	

• 在函数读⼊入了p的数值之后，没
有任何东⻄西回到main，所以y还
是 {0, 0}

#include <stdio.h>	

!
struct point {	

	

 int x;	

	

 int y; };	

!
void getStruct(struct point);	

void output(struct point);	

void main() {	

	

 struct point y = {0, 0};	

	

 getStruct(y);	

	

 output(y); }	

!
void getStruct(struct point p) {	

	

 scanf("%d", &p.x);	

	

 scanf("%d", &p.y);	

	

 printf("%d, %d", p.x, p.y); }	

!
void output(struct point p) {	

	

 printf("%d, %d", p.x, p.y); }

解决的⽅方案
• 之前的⽅方案，把⼀一个结构传⼊入了函数，然后在函数中操
作，但是没有返回回去	

• 问题在于传⼊入函数的是外⾯面那个结构的克隆体，⽽而不是指
针	

• 传⼊入结构和传⼊入数组是不同的	

• 在这个输⼊入函数中，完全可以创建⼀一个临时的结构变量，
然后把这个结构返回给调⽤用者

 struct point inputPoint()	

 {	

 struct point temp;	

 scanf(“%d”, &temp.x);	

 scanf(“%d”, &temp.y);	

 return temp;	

 }

void main() 	

{	

	

 struct point y = {0, 0};	

	

 y = inputPoint();	

	

 output(y); 	

}

也可以把y的地址传给函数，函数的参数类型是指向⼀一个结构的指针。	

不过那样的话，访问结构的成员的⽅方式需要做出调整。

结构指针作为参数

• K & R 说过 (p. 131)	

• “If a large structure is to be passed to a
function, it is generally more efficient to
pass a pointer than to copy the whole
structure”

指向结构的指针

• ⽤用->表⽰示指针所指的结构变量中的成员

结构指针参数

 struct point* inputPoint(struct point *p)	

 {	

 scanf(“%d”, &(p->x));	

 scanf(“%d”, &(p->y);	

 return p;	

 }

void main() 	

{	

	

 struct point y = {0, 0};	

	

 inputPoint(&y);	

	

 output(y); 	

}

• 好处是传⼊入传出只是⼀一个指针的⼤大⼩小	

• 如果需要保护传⼊入的结构不被函数修改	

• const struct point *p	

• 返回传⼊入的指针是⼀一种套路

结构中的结构

结构数组

struct date dates[100];	

struct date dates[] = {	

{4,5,2005},{2,4,2005}};	

!

结构中的结构

struct dateAndTime {	

struct date sdate;	

struct time stime;	

};

嵌套的结构

如果有变量定义：	

 struct rectangle r, *rp;	

 rp = &r;	

!
那么下⾯面的四种形式是等价的：	

 r.pt1.x	

 rp->pt1.x	

 (r.pt1).x	

 (rp->pt1).x	

但是没有rp->pt1->x （因为pt1不是指针）

 struct point {	

 int x;	

 int y; 	

 };	

 struct rectangle {	

 struct point pt1;	

 struct point pt2;	

 };	

!
如果有变量	

 struct rectangle r;	

就可以有：	

 r.pt1.x、r.pt1.y, 	

 r.pt2.x 和 r.pt2.y

结构中的结构的数组
#include <stdio.h>	

!
struct point{	

	

 int x;	

	

 int y;	

};	

!
struct rectangle {	

	

 struct point p1;	

	

 struct point p2;	

};	

!
void printRect(struct rectangle r)	

{	

	

 printf("<%d, %d> to <%d, %d>\n", r.p1.x, r.p1.y, r.p2.x, r.p2.y);	

}	

!
int main(int argc, char const *argv[])	

{	

 int i;	

 struct rectangle rects[] = {{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}; // 2 rectangles	

 for(i=0;i<2;i++) printRect(rects[i]);	

}

