
位运算

按位运算
•C有这些按位运算的运算符：
!

•& 按位的与

•| 按位的或

•~ 按位取反

•^ 按位的异或

•<< 左移

•>> 右移

按位与 &

•如果 (x)i == 1 并且(y)i == 1，那么 (x & y)i =1

•否则的话 (x & y)i = 0!

•按位与常⽤用于两种应⽤用：!
•让某⼀一位或某些位为0：x & 0xFE!

•取⼀一个数中的⼀一段：x & 0xFF

按位或 ｜

•如果 (x)i == 1 或 (y)i == 1，那么 (x | y)i = 1!

•否则的话， (x | y)i == 0!

•按位或常⽤用于两种应⽤用：!
•使得⼀一位或⼏几个位为1：x | 0x01

•把两个数拼起来：0x00FF | 0xFF00

按位取反 ~

• (~x)i = 1 - (x)i

•把1位变0，0位变1

•想得到全部位为1的数：~0

•7的⼆二进制是0111，x | 7使得低3位为1，⽽而

•x & ~7，就使得低3位为0

逻辑运算vs按位运算
• 对于逻辑运算，它只看到两个值：0和1

• 可以认为逻辑运算相当于把所有⾮非0值都变成1，然后
做按位运算

• 5 & 4 —>4⽽而 5 && 4 —> 1 & 1 —> 1

• 5 | 4 —> 5⽽而 5 || 4 —> 1 | 1 —> 1

• ~4 —> 3⽽而 !4 —> !1 —> 0

按位异或^
•如果(x)i == (y)i ，那么(x ^ y)i = 0!

•否则的话，(x ^ y)i == 1!

•如果两个位相等，那么结果为0；不相等，结果为1

•如果x和y相等，那么x ^ y的结果为0

•对⼀一个变量⽤用同⼀一个值异或两次，等于什么也没做

•x ^ y ^ y —> x

左移 <<

•i << j

•i中所有的位向左移动j个位置，⽽而右边填⼊入0

•所有⼩小于int的类型，移位以int的⽅方式来做，结果是int

•x <<= 1 等价于 x *= 2

•x <<= n 等价于 x *= 2n.

右移 >>
•i >> j

•i中所有的位向右移j位

•所有⼩小于int的类型，移位以int的⽅方式来做，结果是int

•对于unsigned的类型，左边填⼊入0

•对于signed的类型，左边填⼊入原来的最⾼高位（保持符号不
变）

•x >>= 1 等价于 x /= 2

•x >>= n 等价于 x /= 2n.

no zuo no die

• 移位的位数不要⽤用负数，这是没有定义的⾏行为

• x << -2 //!!NO!!

输出⼀一个数的⼆二进制

MCU的SFR

UART0 95 November 22, 2004

Philips Semiconductors Preliminary User Manual

LPC2131/2132/2138ARM-based Microcontroller

UART0 Line Control Register (U0LCR - 0xE000C00C)
The U0LCR determines the format of the data character that is to be transmitted or received.

UART0 Line Status Register (U0LSR - 0xE000C014, Read Only)
The U0LSR is a read-only register that provides status information on the UART0 Tx and Rx blocks.

2 Tx FIFO Reset Writing a logic 1 to U0FCR2 will clear all bytes in UART0 Tx FIFO and reset the pointer
logic. This bit is self-clearing. 0

5:3 Reserved Reserved, user software should not write ones to reserved bits. The value read from a
reserved bit is not defined. NA

7:6 Rx Trigger Level
Select

 00: trigger level 0 (1 character or 0x01h)
 01: trigger level 1 (4 characters or 0x04h)
 10: trigger level 2 (8 characters or 0x08h)
 11: trigger level 3 (14 characters or 0x0eh)

These two bits determine how many receiver UART0 FIFO characters must be written
before an interrupt is activated.

0

Table 70: UART0 Line Control Register (U0LCR - 0xE000C00C)

U0LCR Function Description Reset
Value

1:0 Word Length
Select

 00: 5 bit character length
 01: 6 bit character length
 10: 7 bit character length
 11: 8 bit character length

0

2 Stop Bit Select 0: 1 stop bit
 1: 2 stop bits (1.5 if U0LCR[1:0]=00) 0

3 Parity Enable 0: Disable parity generation and checking
 1: Enable parity generation and checking 0

5:4 Parity Select
 00: Odd parity
 01: Even parity
 10: Forced “1” stick parity
 11: Forced “0” stick parity

0

6 Break Control
 0: Disable break transmission
 1: Enable break transmission.
Output pin UART0 TxD is forced to logic 0 when U0LCR6 is active high.

0

7 Divisor Latch
Access Bit

 0: Disable access to Divisor Latches
 1: Enable access to Divisor Latches 0

Table 69: UART0 FIFO Control Register (U0FCR - 0xE000C008)

U0FCR Function Description Reset
Value

MCU的SFR

• const unsigned int SBS = 1u << 2;

• const unsigned int PE = 1u << 3;

• U0LCR |= SBS | PE;

• U0LCR &= ~SBS;

• U0LCR &= ~(SBS | PE);

Table 70: UART0 Line Control Register (U0LCR - 0xE000C00C)

U0LCR Function Description Reset
Value

1:0 Word Length
Select

 00: 5 bit character length
 01: 6 bit character length
 10: 7 bit character length
 11: 8 bit character length

0

2 Stop Bit Select 0: 1 stop bit
 1: 2 stop bits (1.5 if U0LCR[1:0]=00) 0

3 Parity Enable 0: Disable parity generation and checking
 1: Enable parity generation and checking 0

5:4 Parity Select
 00: Odd parity
 01: Even parity
 10: Forced “1” stick parity
 11: Forced “0” stick parity

0

6 Break Control
 0: Disable break transmission
 1: Enable break transmission.
Output pin UART0 TxD is forced to logic 0 when U0LCR6 is active high.

0

7 Divisor Latch
Access Bit

 0: Disable access to Divisor Latches
 1: Enable access to Divisor Latches 0

位段
•把⼀一个int的若干位组合成⼀一个结构

struct {

 unsigned int leading : 3;

 unsigned int FLAG1: 1;

 unsigned int FLAG2: 1;

 int trailing: 11;

};

位段

• 可以直接⽤用位段的成员名称来访问
• ⽐比移位、与、或还⽅方便

• 编译器会安排其中的位的排列，不具有可移植性

• 当所需的位超过⼀一个int时会采⽤用多个int

