
13 | 为什么表数据删掉一半，表文件大小不变？

2018-12-12 林晓斌

经常会有同学来问我，我的数据库占用空间太大，我把一个最大的表删掉了一半的数据，怎么表

文件的大小还是没变？

那么今天，我就和你聊聊数据库表的空间回收，看看如何解决这个问题。

这里，我们还是针对MySQL中应用最广泛的InnoDB引擎展开讨论。一个InnoDB表包含两部

分，即：表结构定义和数据。在MySQL 8.0版本以前，表结构是存在以.frm为后缀的文件里。而

MySQL 8.0版本，则已经允许把表结构定义放在系统数据表中了。因为表结构定义占用的空间很

小，所以我们今天主要讨论的是表数据。

接下来，我会先和你说明为什么简单地删除表数据达不到表空间回收的效果，然后再和你介绍正

确回收空间的方法。

参数innodb_file_per_table

表数据既可以存在共享表空间里，也可以是单独的文件。这个行为是由参数

innodb_file_per_table控制的：

1. 这个参数设置为OFF表示的是，表的数据放在系统共享表空间，也就是跟数据字典放在一

起；

2. 这个参数设置为ON表示的是，每个InnoDB表数据存储在一个以 .ibd为后缀的文件中。



从MySQL 5.6.6版本开始，它的默认值就是ON了。

我建议你不论使用MySQL的哪个版本，都将这个值设置为ON。因为，一个表单独存储为一个文

件更容易管理，而且在你不需要这个表的时候，通过drop table命令，系统就会直接删除这个文

件。而如果是放在共享表空间中，即使表删掉了，空间也是不会回收的。

所以，将 innodb_file_per_table设置为ON，是推荐做法，我们接下来的讨论都是基于这个

设置展开的。

我们在删除整个表的时候，可以使用drop table命令回收表空间。但是，我们遇到的更多的删除

数据的场景是删除某些行，这时就遇到了我们文章开头的问题：表中的数据被删除了，但是表空

间却没有被回收。

我们要彻底搞明白这个问题的话，就要从数据删除流程说起了。

数据删除流程

我们先再来看一下InnoDB中一个索引的示意图。在前面第4和第5篇文章中，我和你介绍索引时

曾经提到过，InnoDB里的数据都是用B+树的结构组织的。

图1 B+树索引示意图

https://time.geekbang.org/column/article/69236
https://time.geekbang.org/column/article/69636


假设，我们要删掉R4这个记录，InnoDB引擎只会把R4这个记录标记为删除。如果之后要再插入

一个ID在300和600之间的记录时，可能会复用这个位置。但是，磁盘文件的大小并不会缩小。

现在，你已经知道了InnoDB的数据是按页存储的，那么如果我们删掉了一个数据页上的所有记

录，会怎么样？

答案是，整个数据页就可以被复用了。

但是，数据页的复用跟记录的复用是不同的。

记录的复用，只限于符合范围条件的数据。比如上面的这个例子，R4这条记录被删除后，如果

插入一个ID是400的行，可以直接复用这个空间。但如果插入的是一个ID是800的行，就不能复

用这个位置了。

而当整个页从B+树里面摘掉以后，可以复用到任何位置。以图1为例，如果将数据页page A上的

所有记录删除以后，page A会被标记为可复用。这时候如果要插入一条ID=50的记录需要使用新

页的时候，page A是可以被复用的。

如果相邻的两个数据页利用率都很小，系统就会把这两个页上的数据合到其中一个页上，另外一

个数据页就被标记为可复用。

进一步地，如果我们用delete命令把整个表的数据删除呢？结果就是，所有的数据页都会被标记

为可复用。但是磁盘上，文件不会变小。

你现在知道了，delete命令其实只是把记录的位置，或者数据页标记为了“可复用”，但磁盘文件

的大小是不会变的。也就是说，通过delete命令是不能回收表空间的。这些可以复用，而没有被

使用的空间，看起来就像是“空洞”。

实际上，不止是删除数据会造成空洞，插入数据也会。

如果数据是按照索引递增顺序插入的，那么索引是紧凑的。但如果数据是随机插入的，就可能造

成索引的数据页分裂。

假设图1中page A已经满了，这时我要再插入一行数据，会怎样呢？



图2 插入数据导致页分裂

可以看到，由于page A满了，再插入一个ID是550的数据时，就不得不再申请一个新的页面

page B来保存数据了。页分裂完成后，page A的末尾就留下了空洞（注意：实际上，可能不止1

个记录的位置是空洞）。



另外，更新索引上的值，可以理解为删除一个旧的值，再插入一个新值。不难理解，这也是会造

成空洞的。

也就是说，经过大量增删改的表，都是可能是存在空洞的。所以，如果能够把这些空洞去掉，就

能达到收缩表空间的目的。

而重建表，就可以达到这样的目的。

重建表

试想一下，如果你现在有一个表A，需要做空间收缩，为了把表中存在的空洞去掉，你可以怎么

做呢？

你可以新建一个与表A结构相同的表B，然后按照主键ID递增的顺序，把数据一行一行地从表A

里读出来再插入到表B中。

由于表B是新建的表，所以表A主键索引上的空洞，在表B中就都不存在了。显然地，表B的主键

索引更紧凑，数据页的利用率也更高。如果我们把表B作为临时表，数据从表A导入表B的操作完

成后，用表B替换A，从效果上看，就起到了收缩表A空间的作用。

这里，你可以使用alter table A engine=InnoDB命令来重建表。在MySQL 5.5版本之前，这个命

令的执行流程跟我们前面描述的差不多，区别只是这个临时表B不需要你自己创建，MySQL会自

动完成转存数据、交换表名、删除旧表的操作。



图3 改锁表DDL

显然，花时间最多的步骤是往临时表插入数据的过程，如果在这个过程中，有新的数据要写入到

表A的话，就会造成数据丢失。因此，在整个DDL过程中，表A中不能有更新。也就是说，这个

DDL不是Online的。

而在MySQL 5.6版本开始引入的Online DDL，对这个操作流程做了优化。

我给你简单描述一下引入了Online DDL之后，重建表的流程：

1. 建立一个临时文件，扫描表A主键的所有数据页；

2. 用数据页中表A的记录生成B+树，存储到临时文件中；

3. 生成临时文件的过程中，将所有对A的操作记录在一个日志文件（row log）中，对应的是图

中state2的状态；

4. 临时文件生成后，将日志文件中的操作应用到临时文件，得到一个逻辑数据上与表A相同的

数据文件，对应的就是图中state3的状态；

5. 用临时文件替换表A的数据文件。



图4 Online DDL

可以看到，与图3过程的不同之处在于，由于日志文件记录和重放操作这个功能的存在，这个方

案在重建表的过程中，允许对表A做增删改操作。这也就是Online DDL名字的来源。

我记得有同学在第6篇讲表锁的文章《全局锁和表锁 ：给表加个字段怎么索这么多阻碍？》的评

论区留言说，DDL之前是要拿MDL写锁的，这样还能叫Online DDL吗？

确实，图4的流程中，alter语句在启动的时候需要获取MDL写锁，但是这个写锁在真正拷贝数据

之前就退化成读锁了。

为什么要退化呢？为了实现Online，MDL读锁不会阻塞增删改操作。

那为什么不干脆直接解锁呢？为了保护自己，禁止其他线程对这个表同时做DDL。

而对于一个大表来说，Online DDL最耗时的过程就是拷贝数据到临时表的过程，这个步骤的执

行期间可以接受增删改操作。所以，相对于整个DDL过程来说，锁的时间非常短。对业务来说，

就可以认为是Online的。

需要补充说明的是，上述的这些重建方法都会扫描原表数据和构建临时文件。对于很大的表来

说，这个操作是很消耗IO和CPU资源的。因此，如果是线上服务，你要很小心地控制操作时

https://time.geekbang.org/column/article/69862


间。如果想要比较安全的操作的话，我推荐你使用GitHub开源的gh-ost来做。

Online 和 inplace

说到Online，我还要再和你澄清一下它和另一个跟DDL有关的、容易混淆的概念inplace的区别。

你可能注意到了，在图3中，我们把表A中的数据导出来的存放位置叫作tmp_table。这是一个临

时表，是在server层创建的。

在图4中，根据表A重建出来的数据是放在“tmp_file”里的，这个临时文件是InnoDB在内部创建出

来的。整个DDL过程都在InnoDB内部完成。对于server层来说，没有把数据挪动到临时表，是

一个“原地”操作，这就是“inplace”名称的来源。

所以，我现在问你，如果你有一个1TB的表，现在磁盘间是1.2TB，能不能做一个inplace的DDL

呢？

答案是不能。因为，tmp_file也是要占用临时空间的。

我们重建表的这个语句alter table t engine=InnoDB，其实隐含的意思是：

跟inplace对应的就是拷贝表的方式了，用法是：

当你使用ALGORITHM=copy的时候，表示的是强制拷贝表，对应的流程就是图3的操作过程。

但我这样说你可能会觉得，inplace跟Online是不是就是一个意思？

其实不是的，只是在重建表这个逻辑中刚好是这样而已。

比如，如果我要给InnoDB表的一个字段加全文索引，写法是：

这个过程是inplace的，但会阻塞增删改操作，是非Online的。

如果说这两个逻辑之间的关系是什么的话，可以概括为：

1. DDL过程如果是Online的，就一定是inplace的；

alter table t engine=innodb,ALGORITHM=inplace;

alter table t engine=innodb,ALGORITHM=copy;

alter table t add FULLTEXT(field_name);



2. 反过来未必，也就是说inplace的DDL，有可能不是Online的。截止到MySQL 8.0，添加全文

索引（FULLTEXT index）和空间索引(SPATIAL index)就属于这种情况。

最后，我们再延伸一下。

在第10篇文章《MySQL为什么有时候会选错索引》的评论区中，有同学问到使用optimize

table、analyze table和alter table这三种方式重建表的区别。这里，我顺便再简单和你解释一

下。

从MySQL 5.6版本开始，alter table t engine = InnoDB（也就是recreate）默认的就是上面图4

的流程了；

analyze table t 其实不是重建表，只是对表的索引信息做重新统计，没有修改数据，这个过程

中加了MDL读锁；

optimize table t 等于recreate+analyze。

小结

今天这篇文章，我和你讨论了数据库中收缩表空间的方法。

现在你已经知道了，如果要收缩一个表，只是delete掉表里面不用的数据的话，表文件的大小是

不会变的，你还要通过alter table命令重建表，才能达到表文件变小的目的。我跟你介绍了重建

表的两种实现方式，Online DDL的方式是可以考虑在业务低峰期使用的，而MySQL 5.5及之前的

版本，这个命令是会阻塞DML的，这个你需要特别小心。

最后，又到了我们的课后问题时间。

假设现在有人碰到了一个“想要收缩表空间，结果适得其反”的情况，看上去是这样的：

1. 一个表t文件大小为1TB；

2. 对这个表执行 alter table t engine=InnoDB；

3. 发现执行完成后，空间不仅没变小，还稍微大了一点儿，比如变成了1.01TB。

你觉得可能是什么原因呢 ？

你可以把你觉得可能的原因写在留言区里，我会在下一篇文章的末尾把大家描述的合理的原因都

列出来，以后其他同学就不用掉到这样的坑里了。感谢你的收听，也欢迎你把这篇文章分享给更

多的朋友一起阅读。

上期问题时间

在上期文章最后，我留给你的问题是，如果一个高配的机器，redo log设置太小，会发生什么情

况。

https://time.geekbang.org/column/article/71173


每次事务提交都要写redo log，如果设置太小，很快就会被写满，也就是下面这个图的状态，这

个“环”将很快被写满，write pos一直追着CP。

这时候系统不得不停止所有更新，去推进checkpoint。

这时，你看到的现象就是磁盘压力很小，但是数据库出现间歇性的性能下跌。

评论区留言点赞板：

@某、人 给了一个形象的描述，而且提到了，在这种情况下，连change buffer的优化也失效

了。因为checkpoint一直要往前推，这个操作就会触发merge操作，然后又进一步地触发刷脏

页操作；

有几个同学提到了内存淘汰脏页，对应的redo log的操作，这个我们会在后面的文章中展开，

大家可以先看一下 @melon 同学的描述了解一下；

@算不出流源 提到了“动态平衡”，其实只要出现了这种“平衡”，意味着本应该后台的操作，就

已经影响了业务应用，属于有损失的平衡。




	13 | 为什么表数据删掉一半，表文件大小不变？
	参数innodb_file_per_table
	数据删除流程
	重建表
	Online 和 inplace
	小结
	上期问题时间

