
21 | 为什么我只改一行的语句，锁这么多？

2018-12-31 林晓斌

在上一篇文章中，我和你介绍了间隙锁和next-key lock的概念，但是并没有说明加锁规则。间隙

锁的概念理解起来确实有点儿难，尤其在配合上行锁以后，很容易在判断是否会出现锁等待的问

题上犯错。

所以今天，我们就先从这个加锁规则开始吧。

首先说明一下，这些加锁规则我没在别的地方看到过有类似的总结，以前我自己判断的时候都是

想着代码里面的实现来脑补的。这次为了总结成不看代码的同学也能理解的规则，是我又重新刷

了代码临时总结出来的。所以，这个规则有以下两条前提说明：

1. MySQL后面的版本可能会改变加锁策略，所以这个规则只限于截止到现在的最新版本，即

5.x系列<=5.7.24，8.0系列 <=8.0.13。

2. 如果大家在验证中有发现bad case的话，请提出来，我会再补充进这篇文章，使得一起学习

本专栏的所有同学都能受益。

因为间隙锁在可重复读隔离级别下才有效，所以本篇文章接下来的描述，若没有特殊说明，默认

是可重复读隔离级别。

我总结的加锁规则里面，包含了两个“原则”、两个“优化”和一个“bug”。

1. 原则1：加锁的基本单位是next-key lock。希望你还记得，next-key lock是前开后闭区间。

2. 原则2：查找过程中访问到的对象才会加锁。

3. 优化1：索引上的等值查询，给唯一索引加锁的时候，next-key lock退化为行锁。

4. 优化2：索引上的等值查询，向右遍历时且最后一个值不满足等值条件的时候，next-key

lock退化为间隙锁。

5. 一个bug：唯一索引上的范围查询会访问到不满足条件的第一个值为止。

我还是以上篇文章的表t为例，和你解释一下这些规则。表t的建表语句和初始化语句如下。

接下来的例子基本都是配合着图片说明的，所以我建议你可以对照着文稿看，有些例子可能

会“毁三观”，也建议你读完文章后亲手实践一下。

案例一：等值查询间隙锁

第一个例子是关于等值条件操作间隙：

图1 等值查询的间隙锁

由于表t中没有id=7的记录，所以用我们上面提到的加锁规则判断一下的话：

CREATE TABLE t̀ ̀(

 ìd ̀int(11) NOT NULL,

 `c ̀int(11) DEFAULT NULL,

 `d ̀int(11) DEFAULT NULL,

 PRIMARY KEY (̀ id)̀,

 KEY `c ̀(̀ c)̀

) ENGINE=InnoDB;

insert into t values(0,0,0),(5,5,5),

(10,10,10),(15,15,15),(20,20,20),(25,25,25);

1. 根据原则1，加锁单位是next-key lock，session A加锁范围就是(5,10]；

2. 同时根据优化2，这是一个等值查询(id=7)，而id=10不满足查询条件，next-key lock退化成间

隙锁，因此最终加锁的范围是(5,10)。

所以，session B要往这个间隙里面插入id=8的记录会被锁住，但是session C修改id=10这行是可

以的。

案例二：非唯一索引等值锁

第二个例子是关于覆盖索引上的锁：

图2 只加在非唯一索引上的锁

看到这个例子，你是不是有一种“该锁的不锁，不该锁的乱锁”的感觉？我们来分析一下吧。

这里session A要给索引c上c=5的这一行加上读锁。

1. 根据原则1，加锁单位是next-key lock，因此会给(0,5]加上next-key lock。

2. 要注意c是普通索引，因此仅访问c=5这一条记录是不能马上停下来的，需要向右遍历，查到

c=10才放弃。根据原则2，访问到的都要加锁，因此要给(5,10]加next-key lock。

3. 但是同时这个符合优化2：等值判断，向右遍历，最后一个值不满足c=5这个等值条件，因此

退化成间隙锁(5,10)。

4. 根据原则2 ，只有访问到的对象才会加锁，这个查询使用覆盖索引，并不需要访问主键索

引，所以主键索引上没有加任何锁，这就是为什么session B的update语句可以执行完成。

但session C要插入一个(7,7,7)的记录，就会被session A的间隙锁(5,10)锁住。

需要注意，在这个例子中，lock in share mode只锁覆盖索引，但是如果是for update就不一样

了。 执行 for update时，系统会认为你接下来要更新数据，因此会顺便给主键索引上满足条件的

行加上行锁。

这个例子说明，锁是加在索引上的；同时，它给我们的指导是，如果你要用lock in share mode

来给行加读锁避免数据被更新的话，就必须得绕过覆盖索引的优化，在查询字段中加入索引中不

存在的字段。比如，将session A的查询语句改成select d from t where c=5 lock in share mode。

你可以自己验证一下效果。

案例三：主键索引范围锁

第三个例子是关于范围查询的。

举例之前，你可以先思考一下这个问题：对于我们这个表t，下面这两条查询语句，加锁范围相

同吗？

你可能会想，id定义为int类型，这两个语句就是等价的吧？其实，它们并不完全等价。

在逻辑上，这两条查语句肯定是等价的，但是它们的加锁规则不太一样。现在，我们就让

session A执行第二个查询语句，来看看加锁效果。

图3 主键索引上范围查询的锁

现在我们就用前面提到的加锁规则，来分析一下session A 会加什么锁呢？

mysql> select * from t where id=10 for update;

mysql> select * from t where id>=10 and id<11 for update;

1. 开始执行的时候，要找到第一个id=10的行，因此本该是next-key lock(5,10]。 根据优化1，

主键id上的等值条件，退化成行锁，只加了id=10这一行的行锁。

2. 范围查找就往后继续找，找到id=15这一行停下来，因此需要加next-key lock(10,15]。

所以，session A这时候锁的范围就是主键索引上，行锁id=10和next-key lock(10,15]。这

样，session B和session C的结果你就能理解了。

这里你需要注意一点，首次session A定位查找id=10的行的时候，是当做等值查询来判断的，而

向右扫描到id=15的时候，用的是范围查询判断。

案例四：非唯一索引范围锁

接下来，我们再看两个范围查询加锁的例子，你可以对照着案例三来看。

需要注意的是，与案例三不同的是，案例四中查询语句的where部分用的是字段c。

图4 非唯一索引范围锁

这次session A用字段c来判断，加锁规则跟案例三唯一的不同是：在第一次用c=10定位记录的时

候，索引c上加了(5,10]这个next-key lock后，由于索引c是非唯一索引，没有优化规则，也就是

说不会蜕变为行锁，因此最终sesion A加的锁是，索引c上的(5,10] 和(10,15] 这两个next-key

lock。

所以从结果上来看，sesson B要插入（8,8,8)的这个insert语句时就被堵住了。

这里需要扫描到c=15才停止扫描，是合理的，因为InnoDB要扫到c=15，才知道不需要继续往后

找了。

案例五：唯一索引范围锁bug

前面的四个案例，我们已经用到了加锁规则中的两个原则和两个优化，接下来再看一个关于加锁

规则中bug的案例。

图5 唯一索引范围锁的bug

session A是一个范围查询，按照原则1的话，应该是索引id上只加(10,15]这个next-key lock，并

且因为id是唯一键，所以循环判断到id=15这一行就应该停止了。

但是实现上，InnoDB会往前扫描到第一个不满足条件的行为止，也就是id=20。而且由于这是个

范围扫描，因此索引id上的(15,20]这个next-key lock也会被锁上。

所以你看到了，session B要更新id=20这一行，是会被锁住的。同样地，session C要插入id=16

的一行，也会被锁住。

照理说，这里锁住id=20这一行的行为，其实是没有必要的。因为扫描到id=15，就可以确定不用

往后再找了。但实现上还是这么做了，因此我认为这是个bug。

我也曾找社区的专家讨论过，官方bug系统上也有提到，但是并未被verified。所以，认为这是

bug这个事儿，也只能算我的一家之言，如果你有其他见解的话，也欢迎你提出来。

案例六：非唯一索引上存在"等值"的例子

接下来的例子，是为了更好地说明“间隙”这个概念。这里，我给表t插入一条新记录。

新插入的这一行c=10，也就是说现在表里有两个c=10的行。那么，这时候索引c上的间隙是什么

状态了呢？你要知道，由于非唯一索引上包含主键的值，所以是不可能存在“相同”的两行的。

mysql> insert into t values(30,10,30);

图6 非唯一索引等值的例子

可以看到，虽然有两个c=10，但是它们的主键值id是不同的（分别是10和30），因此这两个

c=10的记录之间，也是有间隙的。

图中我画出了索引c上的主键id。为了跟间隙锁的开区间形式进行区别，我用(c=10,id=30)这样的

形式，来表示索引上的一行。

现在，我们来看一下案例六。

这次我们用delete语句来验证。注意，delete语句加锁的逻辑，其实跟select ... for update 是类

似的，也就是我在文章开始总结的两个“原则”、两个“优化”和一个“bug”。

图7 delete 示例

这时，session A在遍历的时候，先访问第一个c=10的记录。同样地，根据原则1，这里加的是

(c=5,id=5)到(c=10,id=10)这个next-key lock。

然后，session A向右查找，直到碰到(c=15,id=15)这一行，循环才结束。根据优化2，这是一个

等值查询，向右查找到了不满足条件的行，所以会退化成(c=10,id=10) 到 (c=15,id=15)的间隙

锁。

也就是说，这个delete语句在索引c上的加锁范围，就是下图中蓝色区域覆盖的部分。

图8 delete加锁效果示例

这个蓝色区域左右两边都是虚线，表示开区间，即(c=5,id=5)和(c=15,id=15)这两行上都没有锁。

案例七： limit 语句加锁

例子6也有一个对照案例，场景如下所示：

图9 limit 语句加锁

这个例子里，session A的delete语句加了 limit 2。你知道表t里c=10的记录其实只有两条，因此

加不加limit 2，删除的效果都是一样的，但是加锁的效果却不同。可以看到，session B的insert

语句执行通过了，跟案例六的结果不同。

这是因为，案例七里的delete语句明确加了limit 2的限制，因此在遍历到(c=10, id=30)这一行之

后，满足条件的语句已经有两条，循环就结束了。

因此，索引c上的加锁范围就变成了从（c=5,id=5)到（c=10,id=30)这个前开后闭区间，如下图所

示：

图10 带limit 2的加锁效果

可以看到，(c=10,id=30）之后的这个间隙并没有在加锁范围里，因此insert语句插入c=12是可以

执行成功的。

这个例子对我们实践的指导意义就是，在删除数据的时候尽量加 limit。这样不仅可以控制删除

数据的条数，让操作更安全，还可以减小加锁的范围。

案例八：一个死锁的例子

前面的例子中，我们在分析的时候，是按照next-key lock的逻辑来分析的，因为这样分析比较方

便。最后我们再看一个案例，目的是说明：next-key lock实际上是间隙锁和行锁加起来的结果。

你一定会疑惑，这个概念不是一开始就说了吗？不要着急，我们先来看下面这个例子：

图11 案例八的操作序列

现在，我们按时间顺序来分析一下为什么是这样的结果。

1. session A 启动事务后执行查询语句加lock in share mode，在索引c上加了next-key

lock(5,10] 和间隙锁(10,15)；

2. session B 的update语句也要在索引c上加next-key lock(5,10] ，进入锁等待；

3. 然后session A要再插入(8,8,8)这一行，被session B的间隙锁锁住。由于出现了死

锁，InnoDB让session B回滚。

你可能会问，session B的next-key lock不是还没申请成功吗？

其实是这样的，session B的“加next-key lock(5,10] ”操作，实际上分成了两步，先是加(5,10)的间

隙锁，加锁成功；然后加c=10的行锁，这时候才被锁住的。

也就是说，我们在分析加锁规则的时候可以用next-key lock来分析。但是要知道，具体执行的时

候，是要分成间隙锁和行锁两段来执行的。

小结

这里我再次说明一下，我们上面的所有案例都是在可重复读隔离级别(repeatable-read)下验证

的。同时，可重复读隔离级别遵守两阶段锁协议，所有加锁的资源，都是在事务提交或者回滚的

时候才释放的。

在最后的案例中，你可以清楚地知道next-key lock实际上是由间隙锁加行锁实现的。如果切换到

读提交隔离级别(read-committed)的话，就好理解了，过程中去掉间隙锁的部分，也就是只剩下

行锁的部分。

其实读提交隔离级别在外键场景下还是有间隙锁，相对比较复杂，我们今天先不展开。

另外，在读提交隔离级别下还有一个优化，即：语句执行过程中加上的行锁，在语句执行完成

后，就要把“不满足条件的行”上的行锁直接释放了，不需要等到事务提交。

也就是说，读提交隔离级别下，锁的范围更小，锁的时间更短，这也是不少业务都默认使用读提

交隔离级别的原因。

不过，我希望你学过今天的课程以后，可以对next-key lock的概念有更清晰的认识，并且会用加

锁规则去判断语句的加锁范围。

在业务需要使用可重复读隔离级别的时候，能够更细致地设计操作数据库的语句，解决幻读问题

的同时，最大限度地提升系统并行处理事务的能力。

经过这篇文章的介绍，你再看一下上一篇文章最后的思考题，再来尝试分析一次。

我把题目重新描述和简化一下：还是我们在文章开头初始化的表t，里面有6条记录，图12的语句

序列中，为什么session B的insert操作，会被锁住呢？

图12 锁分析思考题

另外，如果你有兴趣多做一些实验的话，可以设计好语句序列，在执行之前先自己分析一下，然

后实际地验证结果是否跟你的分析一致。

对于那些你自己无法解释的结果，可以发到评论区里，后面我争取挑一些有趣的案例在文章中分

析。

你可以把你关于思考题的分析写在留言区，也可以分享你自己设计的锁验证方案，我会在下一篇

文章的末尾选取有趣的评论跟大家分享。感谢你的收听，也欢迎你把这篇文章分享给更多的朋友

一起阅读。

上期问题时间

上期的问题，我在本期继续作为了课后思考题，所以会在下篇文章再一起公布“答案”。

这里，我展开回答一下评论区几位同学的问题。

@令狐少侠 说，以前一直认为间隙锁只在二级索引上有。现在你知道了，有间隙的地方就可

能有间隙锁。

@浪里白条 同学问，如果是varchar类型，加锁规则是什么样的。

回答：实际上在判断间隙的时候，varchar和int是一样的，排好序以后，相邻两个值之间就有

间隙。

有几位同学提到说，上一篇文章自己验证的结果跟案例一不同，就是在session A执行完这两

个语句：

以后，session B 的update 和session C的insert 都会被堵住。这是不是跟文章的结论矛盾？

其实不是的，这个例子用的是反证假设，就是假设不堵住，会出现问题；然后，推导出session

A需要锁整个表所有的行和所有间隙。

评论区留言点赞板：

begin;

select * from t where d=5 for update; /*Q1*/

@ 某、人 、@郭江伟 两位同学尝试分析了上期问题，并给了有启发性的解答。

堕落天使  1

老师，您好。假期的没跟上，今天补到了这节课，看了之后有几点不是太明白。望能解答一下

。

1. 索引c上的锁算不算是行锁。假如索引c上的next-key lock为(0,5] (5,10]，那么5算不算是c上
的行锁？

2. 在案例六中，执行 “delete from t where c=10;” 语句，索引c上的next-key lock是(5,10],(10,10]
,(10,15)。那么主键索引上的锁是什么呢？是只有行锁，锁住的是 (10,10,10) 和 (30,10,30) 两行
吗？

3. 也是在案例六中，session A不变，在session B中执行 “update t_20 set d=50 where c=5;”、“
update t_20 set d=50 where c=15;”、“insert into t_20 values(40,15,40);”均执行成功，但执行“ins
ert into t_20 values(50,5,50);” 时，却被阻塞。为什么呢？具体执行语句如下
session A
mysql> begin;
mysql> explain delete from t_20 where c=10;
id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 DELETE t_20 range c c 5 const 2 100 Using where
mysql> delete from t_20 where c=10;

session B
mysql> update t_20 set d=50 where c=5;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> update t_20 set d=50 where c=15;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> insert into t_20 values(40,15,40);
Query OK, 1 row affected (0.00 sec)

mysql> explain insert into t_20 values(50,5,50);
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
| 1 | INSERT | t_20 | NULL | ALL | c | NULL | NULL | NULL | NULL | NULL | NULL |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
1 row in set (0.00 sec)

mysql> insert into t_20 values(50,5,50);
（block）

精选留言

javascript:;

我使用的mysql版本是：5.7.23-0ubuntu0.16.04.1
show variables的结果太多，我截取了一部分，或许对您分析有帮助：
innodb_version 5.7.23
protocol_version 10
slave_type_conversions
tls_version TLSv1,TLSv1.1
version 5.7.23-0ubuntu0.16.04.1
version_comment (Ubuntu)
version_compile_machine x86_64
version_compile_os Linux

2019-01-03

 作者回复

1. Next-key lock 就是间隙锁�行锁，所以包含=5这一行

2. 对

3. (c=5,id=50)是在这个gap里哦，你试试插入(1,5,50)对比一下。好问题
2019-01-03

张三  25

Happy New Year !这个专栏绝对是极客时间最好我买过最值的专栏。

2018-12-31

约书亚  12

早晨睡不着打开极客时间一看，竟然更新了。今天是周日而且在假期中哎...

2018-12-31

 作者回复

风雨无阻 节假日不休，包括元旦和春节�
2018-12-31

HuaMax  4

首先老师新年快乐，学习专栏受益良多！

上期问过老师的问题已了解答案，锁是加在索引上的。再尝试回答问题。c上是普通索引，根据
原则2，访问到的都要加锁，在查询c>=15这个条件时，在查找到15后加锁（10，15］，继续往
右查找，按理说不会锁住6这个索引值，但查询语句中加了order by c desc，我猜想会优化为使
用c<=20这条语句，查找到20后往左查找，这样会访问到15左边的值10，从而加锁（5，10］
，不知我理解对否？

2019-01-01

 作者回复

新年好

对的��
2019-01-01

郭江伟  4

javascript:;
javascript:;
javascript:;
javascript:;

郭江伟  4

老师这次的留下的问题，语句跟上次不一样，上期问题语句是select id from t where c>=15 and
c<=20 order by c desc for update;；这次缺少了 order by c desc ，不加desc的话insert into t val
ues(6,6,6);不会被堵塞；
根据优化3：索引上的等值查询，在向右遍历时且最后一个值不满足等值条件的时候next-key lo
ck退化为间隙锁；
问题中的sql语句加了desc ，是向左扫描，该优化用不上，所以下限10是闭区间，为了防止c为
10的行加入，需要锁定到索引c键（5,5）
此例中insert into t values(6,5,6) 会堵塞，insert into t values(4,5,6) 不会堵塞，

2018-12-31

 作者回复

嗯你说的对

不过是我少打一个词了，加上去了，要desc哦

重新分析下�
2018-12-31

undifined  3

遇到一个有趣的问题，在老师的解答下终于弄明白了：

CREATE TABLE z (
id INT PRIMARY KEY AUTO_INCREMENT,
b INT,
KEY b(b)
)
ENGINE = InnoDB
DEFAULT CHARSET = utf8;

INSERT INTO z (id, b)
VALUES (1, 2),
(3, 4),
(5, 6),
(7, 8),
(9, 10);

session A

BEGIN;
SELECT *
FROM z
WHERE b = 6 FOR UPDATE;

javascript:;

session B
INSERT INTO z VALUES (0, 4);
这里为什么会被锁住

答案比较长，写在我自己的笔记里了，地址是 https://helloworlde.github.io/blog/blog/MySQL/M
ySQL-%E4%B8%AD%E5%85%B3%E4%BA%8Egap-lock-next-key-lock-%E7%9A%84%E4%B
8%80%E4%B8%AA%E9%97%AE%E9%A2%98.html

大家可以看看

2019-01-07

 作者回复

好问题，质量很高的笔记

2019-01-10

乾坤  3

您好，关于"优化 2：索引上的等值查询，向右遍历时且最后一个值不满足等值条件的时候，ne
xt-key lock 退化为间隙锁。"，我觉得改为"从第一个满足等值条件的索引记录开始向右遍历到
第一个不满足等值条件记录，并将第一个不满足等值条件记录上的next-key lock 退化为间隙锁"
更明确些

2019-01-01

 作者回复

感觉没大差别，嗯嗯，理解就好�
2019-01-02

Geek_9ca34e  2

老师，你好：

我练习实例的时候发现一个问题：如 案例五：唯一索引范围锁 bug
begin;
select * from t where id>10 and id<=15 for update;
1、执行如上语句加锁范围(10,15]和(15,20]；
2、因为10未加锁，所以我单独再开一个连接，执行delete from t where id=10;不会锁等待，能
正常删除；

3、但是我再执行insert into t values(10,10,10); 语句会等待，无法正常执行；
4、经过分析我发现第一个连接执行的语句的加锁范围已经变成(5,15]和(15,20]，代表锁蔓延了
；这是什么原因呢？

2019-01-09

 作者回复

好问题，我会加到答疑文章中，

Gap是一个动态的概念
2019-01-09

往事随风，顺其自然  2

这和分两步有什么关系？

(5,10]已经是被锁住，分不分两步来加锁，这个间隙和行锁都被锁住了，session b应该是拿不

javascript:;
javascript:;
javascript:;

到锁才对。

2019-01-01

happy涛  1

老师：同上一个问题。 还是案例2. select id from t where c=6 for update;
ID为[0,9)都不可以添加，包括-1都可以。为啥会锁这么多。而c锁的是[5,10),大于等于5，小于1
0

2019-01-23

 作者回复

select id from t where c=6 for update;

这个在c上的锁是（5，10）这个间隙
2019-01-23

往事随风，顺其自然  1

session A
mysql> select * from t where c>=15 and c<=20 order by c desc lock in share mode;
+----+------+------+
| id | c | d |
+----+------+------+
| 20 | 20 | 20 |
| 15 | 15 | 15 |
+----+------+------+
2 rows in set (0.00 sec)

session b
mysql> insert into t values(6,6,6);
Query OK, 1 row affected (0.00 sec)
可以插入成功，没有被锁住

2019-01-01

 作者回复

Explain结果发一下，还有show variables 结果也发下
2019-01-02

是我的海  0

全是干货赞赞赞，以后出去面试再也不怕面试官装X问锁的问题了

2019-01-31

 作者回复

一定要低调哈�

如果面试的时候能够让大家回答更有底气，那就太好啦�
2019-01-31

时隐时现  0

javascript:;
javascript:;
javascript:;
javascript:;

不好意思，这次又来晚了，看这种连载技术文章，和看小说一样，养肥了集中看~~
这次的问题如下，希望丁老师有空解答一下。

版本：mysql 5.6.39
CREATE TABLE `t` (
`a` int(11) NOT NULL,
`b` int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into t values(1,1),(2,2),(3,3),(4,4),(5,5);
采用READ-COMMITTED隔离级别
案例1、
session A：
begin;
update t set a=6 where b=1;
session B：
begin;
update t set a=7 where b=2;
A和B均能执行成功
问题1：官档上说对于RC且全表扫描的update，先逐行添加行锁然后释放掉不符合where条件
的，那么session A成功对(1,1)加锁，理论上session B在扫描(1,1)并尝试加锁时会被阻塞，为
何还能执行成功？官档链接：https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isol
ation-levels.html

案例2：
session A：
begin;
update t set a=6 where b=1;
session B：
begin;
delete from t where b=2; -- 被阻塞
问题2：为何案例1 中的session B不会被阻塞，而案例2的却被session A的行数阻塞，update和
delete都是全部扫描，难道加锁机制不一样？

2019-01-30

 作者回复

好问题，在read-commited隔离级别下，update语句

有一个“semi-consistent” read优化，

意思是，如果update语句碰到一个已经被锁了的行，会读入最新的版本，然后判断一下是不是

满足查询条件，

a)如果不满足，就直接跳过；

b) 如果满足，才进入锁等待

你的第二个问题：这个策略，只对update有效，delete无效

新春快乐~
2019-02-04

Leon�  0

老师，案例八session B的操作语句update t set d = d + 1 where c =10; 由于c是非唯一键索引，
锁（5，10」可以理解
，为什么不锁(10,15} 呢，不是应该继续向后扫描直到第一个不满足条件的值为止吗

2019-01-29

 作者回复

好问题，新年快乐

会锁的，只是因为在(5,10]就被锁住了，所以后面的锁加不上去了�
2019-02-01

happy涛  0

老师：

环境同上. QQ466096028
案二：案三也不对。

案例五：b事物也可以执行成功， 16，16，16我也可以写入 ，id（10,15）不可以。
案例六：我没有添加C10,ID30的数。还是用0，5，10，15，20，25这几条数据， 案例六中的
代码执行结果是ID（10，15），c(5,15) ..
头好疼，感觉理不清，规则太乱了。

2019-01-23

 作者回复

啊 已经是我简化过的规则了。。需要再理解一下。。

你用session A、sessionB这种模式列一下复现步骤，哪个不清楚的，我们一个个来看吧
2019-01-23

happy涛  0

老师：

案例二：非唯一索引等值锁，这个文章中，事物A加读取之后， 按您的文章走，最后结果加的
是（5，10）间隙锁， 但我这里为什么插入，c从[0,9)都不能插入。
mysql版本是8.0.12,隔离级别是RR，表用的是您的例子，数据也是。

2019-01-23

 作者回复

不是哦

案例二的语句是 where c=5 lock in share mode, 这个在c上的加锁范围是(5,10)
2019-01-23

alias cd=rm -rf  0

思考题：

javascript:;
javascript:;
javascript:;
javascript:;

order by desc优化器会向左遍历
1、先判断条件c<=20，普通索引等值c=20，所以next-key-lock:（25，20]
2、20到15，所以next-key-lock:（20，15]
3、判断c>=15，普通索引c=15，继续向左遍历到c=5不符合条件，并且优化2等值第一个不符
合条件的数据降为间隙锁(5,15)
所以锁的范围是(5,15)+[15,20)+[20,25)

2019-01-16

 作者回复

3、判断c>=15，普通索引c=15，继续向左遍历到c=5不符合条件，并且优化2等值第一个不符

合条件的数据降为间隙锁(5,15)

所以锁的范围是(5,15)+[15,20)+[20,25)

这个不太对哈（或者说跟我文章里面说的规则不匹配）。

c>=15这个条件，只会向左匹配到c=10这个记录，

只是因为next-key lock是前开后闭区间，所以就是(5,10].

结论的范围也确实是(5,15)+[15,20)+[20,25) �
2019-01-17

J!  0

select max(id) from tb1 和 select id from tb1 order by id desc limit 1; id 为主键，这个两个的加
索过程都是一样的吗

2019-01-16

 作者回复

都不加锁。。

如果你说的是后面加 for update, 加索范围一样的
2019-01-16

任洋  0

老师你好，最近在线上遇到一个问题如下：执行一个简单的update语句更新数据库，where后
面的字段没有索引，这个字段的数据库中值可能有重复，在并发的情况下，会偶发出现数据库

死锁的情况。后面通过，查询出主键，再通过主键进行更新，解决了这个问题，但不明白为什

么会出现死锁的情况，能麻发解释下吗？

2019-01-15

 作者回复

update 没索引就是锁住主键索引上所有的行和间隙

锁的内容太多了， 这样确实容易出现死锁哦
2019-01-15

陈  0

javascript:;
javascript:;
javascript:;

老师在案列一中update t set d=d+1 where id=7 中id是主键也是唯一索引，按优化1应该退化成
行锁才对，为什么insert into t values(8,8,8)会被锁住，我是那儿理解错了?

2019-01-11

 作者回复

这一行存在的时候是行锁，这一行不存在，那就是间隙锁啦。

insert into t values(8,8,8)是被主键上(5,10)的间隙锁锁住的
2019-01-11

	21 | 为什么我只改一行的语句，锁这么多？
	案例一：等值查询间隙锁
	案例二：非唯一索引等值锁
	案例三：主键索引范围锁
	案例四：非唯一索引范围锁
	案例五：唯一索引范围锁bug
	案例六：非唯一索引上存在"等值"的例子
	案例七：limit 语句加锁
	案例八：一个死锁的例子
	小结
	上期问题时间
	精选留言

