

•

•

•

Inheritance

Inheritance

Inheritance

Inheritance

class <类名>(<基类名>):

def __init__(self, <参数列表>)

<语句块>

……

•

•

•

•

基类class DemoClass:

count = 0

def __init__(self, name):

self.name = name

DemoClass.count += 1

def getName(self):

return self.name

class HumanNameClass(DemoClass):

def printName(self):

return str(DemoClass.count) + self.name + "同志"

dc1 = HumanNameClass("老王")

print(dc1.getName())

print(dc1.printName())

派生类

派生类的实例对象

class DemoClass:

count = 0

def __init__(self, name):

self.name = name

DemoClass.count += 1

def getName(self):

return self.name

class HumanNameClass(DemoClass):

def printName(self):

return str(DemoClass.count) + self.name + "同志"

dc1 = HumanNameClass("老王")

print(dc1.getName())

print(dc1.printName())

对基类类属性的使用

对基类实例方法的使用

对派生类实例方法的使用

2 Python

True

True

True

class DemoClass:
count = 0
def __init__(self, name):

self.name = name
DemoClass.count += 1

def getName(self):
return self.name

class HumanNameClass(DemoClass):
def printName(self):

return str(DemoClass.count) + self.name + "同志"

dc1 = HumanNameClass("老王")
print(isinstance(dc1, DemoClass))
print(isinstance(dc1, HumanNameClass))
print(issubclass(HumanNameClass, DemoClass))

•

•

•

•

•

object Python

object

The most base type

()

<class 'type'>

builtins

{'__repr__': <slot wrapper(略)

print(object.__name__)

print(object.__doc__)

print(object.__bases__)

print(object.__class__)

print(object.__module__)

print(object.__dict__)

•

•

•

Python

/

2 Python

86222320 <class '__main__.HumanNameClass'>

86207768 <class 'type'>

False

<class 'type'> <class 'type'>

class DemoClass:
count = 0
def __init__(self, name):

self.name = name
DemoClass.count += 1

def getName(self):
return self.name

class HumanNameClass(DemoClass):
def printName(self):

return str(DemoClass.count) + self.name + "同志"

dc1 = HumanNameClass("老王")
print(id(dc1), type(dc1))
print(id(DemoClass), type(DemoClass))
print(dc1 is DemoClass)
print(type(object), type(type))

•

•

•

•

•

类属性 被重载
class DemoClass:

count = 0
def __init__(self, name):

self.name = name
DemoClass.count += 1

class HumanNameClass(DemoClass):
count = 99
def __init__(self, name):

self.name = name
HumanNameClass.count -= 1

def printCount(self):
return str(HumanNameClass.count) + self.name

dc1 = HumanNameClass("老王")
print(dc1.printCount())

类属性 被重载

类属性用类名调用，不容易被误解

实例属性 被重载

class DemoClass:
count = 0
def __init__(self, name):

self.name = name
DemoClass.count += 1

class HumanNameClass(DemoClass):
count = 99
def __init__(self, name):

self.name = name
HumanNameClass.count -= 1

def printCount(self):
return str(HumanNameClass.count) + self.name

dc1 = HumanNameClass("老王")
print(dc1.printCount())

实例属性 被重载

实例属性用对象名调用，容易被误解

构造方法 被重载

class DemoClass:
count = 0
def __init__(self, name):

self.name = name
DemoClass.count += 1

class HumanNameClass(DemoClass):
count = 99
def __init__(self, name):

self.name = name
HumanNameClass.count -= 1

def printCount(self):
return str(HumanNameClass.count) + self.name

dc1 = HumanNameClass("老王")
print(dc1.printCount())

构造方法 被重载

98老王

class DemoClass:
count = 0
def __init__(self, name):

self.name = name
DemoClass.count += 1

class HumanNameClass(DemoClass):
count = 99
def __init__(self, name):

self.name = name
HumanNameClass.count -= 1

def printCount(self):
return str(HumanNameClass.count) + self.name

dc1 = HumanNameClass("老王")
print(dc1.printCount())

•

•

super()

class <派生类名>(<基类名>):

def <方法名>(self, <参数列表>)

super().<基类方法名>(<参数列表>)

……

0老王同志

class DemoClass:
count = 0
def __init__(self, name):

self.name = name
DemoClass.count += 1

def printCount(self):
return str(DemoClass.count) + self.name

class HumanNameClass(DemoClass):
def __init__(self, name):

self.name = name
def printCount(self):

return super().printCount() + "同志"

dc1 = HumanNameClass("老王")
print(dc1.printCount())

通过super()找到了基类

super().printCount()调用了基类方法

class DemoClass:
count = 0
def __init__(self, name):

self.name = name
DemoClass.count += 1

def printCount(self):
return str(DemoClass.count) + self.name

class HumanNameClass(DemoClass):
def __init__(self, name):

self.name = name
def printCount(self):

return super().printCount() + "同志"

dc1 = HumanNameClass("老王")
print(dc1.printCount())

class <类名>(<基类名1>, <基类名2>,…,<基类名N>):

def __init__(self, <参数列表>)

<语句块>

……

Python

多继承，方法printName()按照

深度优先、从左至右方式寻找

class DemoClass:
def __init__(self, name):

self.name = name
def printName(self):

return self.name

class NameClass:
def __init__(self, title):

self.nick = title
def printName(self):

return self.nick + "同志"

class HumanNameClass(DemoClass, NameClass):
pass

dc1 = HumanNameClass("老王")
print(dc1.printName())

老王

多继承，方法printName()按照

深度优先、从左至右方式寻找

class DemoClass:
def __init__(self, name):

self.name = name
def printName(self):

return self.name

class NameClass:
def __init__(self, title):

self.nick = title
def printName(self):

return self.nick + "同志"

class HumanNameClass(NameClass, DemoClass):
pass

dc1 = HumanNameClass("老王")
print(dc1.printName())

老王同志

•

•

•

多继承，super()也按照深度优先、从

左至右方式寻对应找基类方法

老王你好

class DemoClass:
def __init__(self, name):

self.name = name
def printName(self):

return self.name

class NameClass:
def __init__(self, title):

self.nick = title
def printName(self):

return self.nick + "同志"

class HumanNameClass(DemoClass, NameClass):
def printName(self):

return super().printName() + "你好"

dc1 = HumanNameClass("老王")
print(dc1.printName())

