

•

•

•

Operation

Operation

•

•

•

•

•

-obj

+obj

abs(obj)

~obj

obj + other

obj - other

obj * other

obj / other

(1)

obj // other

obj % other

divmod(obj, other)

(2)

obj ** other

obj << other

obj >> other

(3)

obj & other

obj ^ other

obj & other

(4)

继承list类型的新类型

重载其中的加法运算

class NewList(list):

def __add__(self, other):

result = []

for i in range(len(self)):

try:

result.append(self[i] + other[i])

except:

result.append(self[i])

return result

ls = NewList([1,2,3,4,5,6])

lt = NewList([1,2,3,4])

print(ls + lt)

对两个对象进行加运算

class NewList(list):

def __add__(self, other):

result = []

for i in range(len(self)):

try:

result.append(self[i] + other[i])

except:

result.append(self[i])

return result

ls = NewList([1,2,3,4,5,6])

lt = NewList([1,2,3,4])

print(ls + lt)

[2, 4, 6, 8, 5, 6]

class NewList(list):

def __add__(self, other):

result = []

for i in range(len(self)):

try:

result.append(self[i] + other[i])

except:

result.append(self[i])

return result

ls = NewList([1,2,3,4,5,6])

lt = NewList([1,2,3,4])

print(ls + lt)

•

•

•

obj < other
obj <= other
obj == other
obj != other
obj > other
obj >= other

class NewList(list):
def __lt__(self, other):

"以各元素算术和为比较依据"
s, t = 0, 0
for c in self:

s += c
for c in other:

t += c
return True if s < t else False

ls = NewList([6,1,2,3])
lt = NewList([1,2,3,99])
print([6,1,2,3] < [1,2,3,99])
print(ls < lt)

继承list类型的新类型

重载其中的小于比较运算

class NewList(list):
def __lt__(self, other):

"以各元素算术和为比较依据"
s, t = 0, 0
for c in self:

s += c
for c in other:

t += c
return True if s < t else False

ls = NewList([6,1,2,3])
lt = NewList([1,2,3,99])
print([6,1,2,3] < [1,2,3,99])
print(ls < lt)

对两个对象进行小于运算

同时比较列表的小于运算

False

True

class NewList(list):
def __lt__(self, other):

"以各元素算术和为比较依据"
s, t = 0, 0
for c in self:

s += c
for c in other:

t += c
return True if s < t else False

ls = NewList([6,1,2,3])
lt = NewList([1,2,3,99])
print([6,1,2,3] < [1,2,3,99])
print(ls < lt)

•

•

•

obj[k]

obj[k] = v

del obj[k]

obj.reversed()

item in obj

继承list类型的新类型

重载其中的成员判断运算

class NewList(list):

def __contains__(self, item):

"各元素算术和也作为成员"

s = 0

for c in self:

s += c

if super().__contains__(item) or item == s:

return True

else:

return False

ls = NewList([6,1,2,3])

print(6 in ls, 12 in ls)

对2个元素进行成员判断

class NewList(list):

def __contains__(self, item):

"各元素算术和也作为成员"

s = 0

for c in self:

s += c

if super().__contains__(item) or item == s:

return True

else:

return False

ls = NewList([6,1,2,3])

print(6 in ls, 12 in ls)

True True

class NewList(list):

def __contains__(self, item):

"各元素算术和也作为成员"

s = 0

for c in self:

s += c

if super().__contains__(item) or item == s:

return True

else:

return False

ls = NewList([6,1,2,3])

print(6 in ls, 12 in ls)

•

•

•

•

repr(obj)

str(obj)

len(obj)

1

int(obj)

float(obj)

complex(obj)

2

round(obj)

bytes(obj)

bool(obj)

3

self, format_spec
obj.format()

format(obj)

4

继承list类型的新类型

重载其中的格式化运算

class NewList(list):
def __format__(self, format_spec):

"格式化输出，以逗号分隔"
t = []
for c in self:

if type(c) == type("字符串"):
t.append(c)

else:
t.append(str(c))

return ", ".join(t)

ls = NewList([1,2,3,4])
print(format([1,2,3,4]))
print(format(ls))

格式化输出

并与列表类型比较

class NewList(list):
def __format__(self, format_spec):

"格式化输出，以逗号分隔"
t = []
for c in self:

if type(c) == type("字符串"):
t.append(c)

else:
t.append(str(c))

return ", ".join(t)

ls = NewList([1,2,3,4])
print(format([1,2,3,4]))
print(format(ls))

[1, 2, 3, 4]

1, 2, 3, 4

class NewList(list):
def __format__(self, format_spec):

"格式化输出，以逗号分隔"
t = []
for c in self:

if type(c) == type("字符串"):
t.append(c)

else:
t.append(str(c))

return ", ".join(t)

ls = NewList([1,2,3,4])
print(format([1,2,3,4]))
print(format(ls))

•

•

