

•

•

•

Namespace

•

•

•

Namespace

模块的命名空间

第一层函数的命名空间

count = 0

def getCounting(a):
count = 0
if a != "":

def doCounting():
nonlocal count
count += 1

doCounting()
return count

print(getCounting("1"), count)
print(getCounting("2"), count)
print(getCounting("3"), count)

第二层函数的命名空间

nonlocal声明变量不在当前命名空间

变量在上层命名空间，但不是全局

count = 0

def getCounting(a):
count = 0
if a != "":

def doCounting():
nonlocal count
count += 1

doCounting()
return count

print(getCounting("1"), count)
print(getCounting("2"), count)
print(getCounting("3"), count)

1 0

1 0

1 0

count = 0

def getCounting(a):
count = 0
if a != "":

def doCounting():
nonlocal count
count += 1

doCounting()
return count

print(getCounting("1"), count)
print(getCounting("2"), count)
print(getCounting("3"), count)

global声明变量在全局命名空间

count = 0

def getCounting(a):
count = 0
if a != "":

def doCounting():
global count
count += 1

doCounting()
return count

print(getCounting("1"), count)
print(getCounting("2"), count)
print(getCounting("3"), count)

0 1

0 2

0 3

count = 0

def getCounting(a):
count = 0
if a != "":

def doCounting():
global count
count += 1

doCounting()
return count

print(getCounting("1"), count)
print(getCounting("2"), count)
print(getCounting("3"), count)

•

•

d = DemoClass(" ")

d.age = -99

•

•

•

@property

@property 用于转换方法为属性

@<方法名>.setter

用于设定属性的赋值操作

class DemoClass:
def __init__(self, name):

self.name = name

@property
def age(self):

return self._age

@age.setter
def age(self, value):

if value < 0 or value > 100:
value = 30

self._age = value

dc1 = DemoClass("老李")
dc1.age = -100
print(dc1.age)

返回一个属性值

class DemoClass:
def __init__(self, name):

self.name = name

@property
def age(self):

return self._age

@age.setter
def age(self, value):

if value < 0 or value > 100:
value = 30

self._age = value

dc1 = DemoClass("老李")
dc1.age = -100
print(dc1.age)

对同名属性值的赋值操作进行处理

class DemoClass:
def __init__(self, name):

self.name = name

@property
def age(self):

return self._age

@age.setter
def age(self, value):

if value < 0 or value > 100:
value = 30

self._age = value

dc1 = DemoClass("老李")
dc1.age = -100
print(dc1.age)

30

class DemoClass:
def __init__(self, name):

self.name = name

@property
def age(self):

return self._age

@age.setter
def age(self, value):

if value < 0 or value > 100:
value = 30

self._age = value

dc1 = DemoClass("老李")
dc1.age = -100
print(dc1.age)

•

•

•

Exception Python

自定义一个异常class DemoException(Exception):

pass

try:

raise DemoException()

except DemoException:

print("捕获DemoException异常")

捕捉这个异常

class DemoException(Exception):

pass

try:

raise DemoException()

except DemoException:

print("捕获DemoException异常")

raise保留字产生异常

自定义一个异常类型

捕捉这个异常及异常对象e

class DemoException(Exception):

def __init__(self, name, msg = "自定义异常"):

self.name = name

self.msg = msg

try:

raise DemoException("脚本错误")

except DemoException as e:

print("{}异常的报警是{}".format(e.name, e.msg))

class DemoException(Exception):

def __init__(self, name, msg = "自定义异常"):

self.name = name

self.msg = msg

try:

raise DemoException("脚本错误")

except DemoException as e:

print("{}异常的报警是{}".format(e.name, e.msg))

raise保留字产生异常

Name Mangling

•

•

•

_X

•

•

•

约定内部使用

class DemoClass:
def __init__(self, name):

self.name = name
self._nick = name + "同志"

def getNick(self):
return self._nick

dc1 = DemoClass("老李")
print(dc1.getNick())
print(dc1._nick) 仍然可以外部调用

class DemoClass:
def __init__(self, name):

self.name = name
self._nick = name + "同志"

def getNick(self):
return self._nick

dc1 = DemoClass("老李")
print(dc1.getNick())
print(dc1._nick)

老李同志

老李同志

X_

•

•

仅是为了避免重名

class DemoClass:
def __init__(self, name):

self.name = name
self.class_ = name + "同志"

def getNick(self):
return self.class_

dc1 = DemoClass("老李")
print(dc1.getNick())
print(dc1.class_)

__X

•

•

•

私有属性

class DemoClass:
def __init__(self, name):

self.name = name
self.__nick = name + "同志"

def getNick(self):
return self.__nick

dc1 = DemoClass("老李")
print(dc1.getNick())
print(dc1._DemoClass__nick)
print(dc1.__nick)

老李同志

老李同志

AttributeError: 'DemoClass'

object has no attribute

'__nick'

class DemoClass:
def __init__(self, name):

self.name = name
self.__nick = name + "同志"

def getNick(self):
return self.__nick

dc1 = DemoClass("老李")
print(dc1.getNick())
print(dc1._DemoClass__nick)
print(dc1.__nick)

__X__

•

•

正常的属性名称

class DemoClass:
def __init__(self, name):

self.name = name
self.__nick__ = name + "同志"

def getNick(self):
return self.__nick__

dc1 = DemoClass("老李")
print(dc1.getNick())
print(dc1.__nick__)

老李同志

老李同志

class DemoClass:
def __init__(self, name):

self.name = name
self.__nick__ = name + "同志"

def getNick(self):
return self.__nick__

dc1 = DemoClass("老李")
print(dc1.getNick())
print(dc1.__nick__)

_

•

老李同志

老李同志

class DemoClass:
def __init__(self, name):

self.name = name
_ = "同志"
self.__nick__ = name + _

def getNick(self):
return self.__nick__

dc1 = DemoClass("老李")
print(dc1.getNick())
print(dc1.__nick__)

无关紧要的名字

•

•

•

•

•

Python

class <类名>():

pass

•

•

•

Python

建立一个最小空类

通过增加属性实现对数据被保存

class EmptyClass:

pass

a = EmptyClass()

a.name = "老李"

a.age = 50

a.family = {"儿子": "小李", "女儿": "囡李"}

print(a.family)

print(a.__dict__)

class EmptyClass:

pass

a = EmptyClass()

a.name = "老李"

a.age = 50

a.family = {"儿子": "小李", "女儿": "囡李"}

print(a.family)

print(a.__dict__)

{'儿子': '小李', '女儿': '囡李'}

{'name': '老李', 'age': 50,

'family': {'儿子': '小李',

'女儿': '囡李'}}

