import numpy as np from math import sqrt def accuracy_score(y_true, y_predict): """计算y_true和y_predict之间的准确率""" assert len(y_true) == len(y_predict), \ "the size of y_true must be equal to the size of y_predict" return np.sum(y_true == y_predict) / len(y_true) def mean_squared_error(y_true, y_predict): """计算y_true和y_predict之间的MSE""" assert len(y_true) == len(y_predict), \ "the size of y_true must be equal to the size of y_predict" return np.sum((y_true - y_predict)**2) / len(y_true) def root_mean_squared_error(y_true, y_predict): """计算y_true和y_predict之间的RMSE""" return sqrt(mean_squared_error(y_true, y_predict)) def mean_absolute_error(y_true, y_predict): """计算y_true和y_predict之间的RMSE""" assert len(y_true) == len(y_predict), \ "the size of y_true must be equal to the size of y_predict" return np.sum(np.absolute(y_true - y_predict)) / len(y_true) def r2_score(y_true, y_predict): """计算y_true和y_predict之间的R Square""" return 1 - mean_squared_error(y_true, y_predict)/np.var(y_true)