
列表元组的操作符

本节课内容

len 在列表与元组上的使用

列表（元组）之间的累加与乘法

in 和 not in 在列表（元组）中的用法

len在列表元组中的使用

len 函数可以计算出 除了数字类型以外，其他所有的数据类型的
长度

列表（元组）之间的累加与乘法

+= ?
*= ?

in 和 not in 在列表（元组）中的用法

in 是判断 某个成员（元素）是否在该数据结构中

not in 就是判断某个成员（元素）是否不在该数据结构中

列表的添加-append函数

本节课内容

 append的功能

 append的用法

 append的注意事项

append的功能

 将一个元素添加到当前列表中

append的用法

用法：

list.append(new_item)

参数：

new_item: 添加进列表的新的元素(成员）

append的注意事项

 被添加的元素只会被添加到末尾

 append函数是在原有列表的基础上添加，不需要额外添加新的变量

列表的添加-insert函数

本节课内容

 insert的功能

 insert的用法

 insert与append的区别

insert的功能

 将一个元素添加到当前列表的制定位置中

insert的功能与用法

用法：

list.insert(index，new_item)

参数：

index： 新的元素放在哪个位置(数字)

new_item： 添加的新元素 (成员）

insert与append的区别

 append只能添加到列表的结尾，而insert可以选择任何一个位置

 如果insert传入的位置列表中不存在，则将新元素添加到列表结尾

 字符串， 元组， 字符串 元素的位置是从 0 开始 计算的

列表（元组）的count函数

本节课内容

 count 的功能

 count 的用法

 count 的注意事项

count的功能

 返回当前字符串中某个成员的个数

count的用法

用法：

inttype = list.count(item)

参数：

item：你想查询个数的元素

count 的注意事项

 如果查询的成员（元素）不存在，则返回 0

 列表只会检查完整元素是否存在需要计算的内容

列表的remove函数

本节课内容

 remove的功能

 remove的用法

 remove 的注意事项

 Python内置函数 del

remove功能

 删除列表中的某个元素

remove用法

用法：

list.remove(item)

参数：

item: 准备删除的列表元素

remove 的注意事项

 如果删除的成员（元素）不存在，会直接报错

 如果被删除的元素有多个，只会删除第一个

 remove函数不会返回一个新的列表，而是在原先的列表中对元素进行删除

Python的内置函数 del

 del 把变量完全删除

pop和del我们稍后见

 pop是列表中另一个删除函数

 del也可以删除列表中的指定元素

 我们会在学习索引的时候为大家讲解这两个函数的用法

列表的reverse函数

本节课内容

 reverse 的功能

 reverse 的用法

reverse的功能

 对当前列表顺序进行反转

reverse的用法

用法：

list.reverse()

参数：

无参数传递

列表的sort函数

本节课内容

 sort 的功能

 sort 的用法

 sort 的主意事项

sort的功能

 对当前列表按照一定规律进行排序

sort的用法

用法：

list.sort(key=None, reverse=False)

参数：

key – 参数比较

reverse -- 排序规则，reverse = True 降序， reverse = False 升序 （默认）

key涉及函数学习，我们在日后讲解当前默认不传即可

sort的注意事项

 列表中的元素类型必须相同，否则无法排序（报错）

列表的clear函数

本节课内容

 clear的功能

 clear的用法

clear的功能

 将当前列表中的数据清空

clear用法

用法：

list.clear() -> 该函数无参数，无返回值

列表的copy函数

本节课内容

 copy 的功能

 copy 的用法

 copy 与 2次赋值的区别

copy功能

将当前的列表复制一份相同的列表，新列表
与旧列表内容相同，但内存空间不同

copy用法

用法：

list.copy() -> 该函数无参数，返回一个一模一样的列表

copy与二次赋值的区别

 二次赋值的变量与原始变量享有相同内存空间

 copy函数创建的新列表与原始列表不是一个内

存空间，不同享数据变更

 copy 属于 浅拷贝

a = [1,2,3]

b = a

 通俗的说，我们有一个列表a，列表

里的元素还是列表，当我们拷贝出新列

表b后，无论是a还是b的内部的列表中

的数据发生了变化后，相互之间都会受

到影响，– 浅拷贝

浅拷贝

深拷贝

 不仅对第一层数据进行了

copy，对深层的数据也进行

copy，原始变量和新变量完

完全全不共享数据 – 深拷贝

列表的extend函数

本节课内容

 extend 功能

 extend 用法

extend的功能

 将其他列表或元组中的元素倒入到当前列表中

extend的功能

用法：

list.extend(iterable) ->

参数：

iterable 代表列表或元组，该函数无返回值

索引与切片之列表

本节课内容

 什么是索引

 什么是切片

 列表的索引，获取与修改

 通过 pop 删除索引

 通过 del 删除索引

 索引在元组中的特殊性

什么是索引

 字符串，列表和元组

 从最左边记录的位置就是索引

 索引用数字表示，起始从 0 开始

 字符串，列表（元组）的最大索引是他们的长度 – 1

[‘name’, ‘work’, ‘test’…]

索引0 索引1 索引2

什么是切片

 索引用来对单个元素进行访问，切片则对一定范围内的元素进行访问

 切片通过冒号在中括号内把像个的两个索引查找出来 [0: 10]

 切片规则为： 左含，右不含

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9 ,10]

print(numbers[3: 8])

>> [4, 5, 6, 7, 8]

列表的索引，获取与修改

 list[index] = new_item

 数据的修改只能在存在的索引范围内

 列表无法通过添加新的索引的方式赋值

 list.index(item)

tests = ['a', 'b', 'c']

tests[2] = 's' ok

tests[3] = 'o' -> X

pop的功能

 通过索引删除并获取列表的元素

pop的用法

用法：

list.pop(index)

参数：

index: 删除列表的第几个索引

-> 函数会删除该索引的元素并返回

-> 如果传入的index索引不存在则报错

通过del删除索引

del list[index]

 直接删除 无返回值

 如果index（索引）不存在则报错

索引切片在元组中的特殊性

 可以和列表一样获取索引与切片索引

 元组函数 index 和列表用法完全一致

 无法通过索引修改与删除元素

索引与切片之字符串

本节课内容

 字符串的索引，获取

 字符串的find与index函数

字符串的索引与获取

索引规则与列表相同

切片和索引的获取与列表相同

无法通过索引修改与删除

字符串不可修改

‘dewei’
0 1 2 3 4

name = 'dewei'

name[0] -> d

name[:2] -> de

字符串的find与index函数

功能：

获取元素的索引位置

用法：

string.index(item) -> item: 查询个数的元素, 返回索引位置

string.find(item) -> item: 查询个数的元素, 返回索引位置

find与index的区别

 find如果获取不到，返回-1

 index如果获取不到，直接报错

