
编译、构建和调试

孟宁

关注孟宁

GCC

• 在默认情况下ubuntu没有提供c/c++编译环境， ubuntu提供了了build-
essential包让⼀一次把相关软件安装好

• $ sudo apt-get install build-essential

• $ apt depends build-essential # 查看哪些包被build-essential依赖⽤用
命令

From C to running program

fan
汇编代码�

fan
编译�

fan
目标文件�

fan
编译�

fan
二进制CPU指令集�

fan
链接�

fan
可执行文件�

fan
加载到内存执行䡘

gcc⽤用法参考
• gcc –E –o *.cpp *.c

• gcc –x cpp-output –S –o *.s *.cpp

• gcc –S –o *.s *.c

• gcc –x assembler –c *.s -o *.o

• gcc –c *.c -o *.o

• as –o *.o *.s

• gcc –o * *.o

• gcc –o * *.c

fan
gcc把上面图的过程全部做了
.c -> .out�

fan
文本�

make & Makefile

• make是⼀一个命令⼯工具，是⼀一个解释Makefile中指令的命令⼯工具，⼀一般
来说，⼤大多数的IDE都有这个命令，⽐比如：Delphi的make，Visual
C++的nmake，Linux下GNU的make。

• make命令执⾏行行时，需要⼀一个 Makefile⽂文件，以告诉make命令需要怎
么样的去编译和链接程序。

fan
当项目很多的时候，gcc就很不方便了，需要makefile�

⼯工程⽂文件的作⽤用

• 如果这个⼯工程没有编译过，那么我们的所有C⽂文件都要编译并被链
接。

• 如果这个⼯工程的某⼏几个C⽂文件被修改，那么我们只编译被修改的C⽂文
件，并链接⽬目标程序。

• 如果这个⼯工程的头⽂文件被改变了了，那么我们需要编译引⽤用了了这⼏几个头
⽂文件的C⽂文件，并链接⽬目标程序。

Makefile的规则

• <target> : <prerequisites>

• [tab] <commands>（任意的Shell命令）

• ...

• ...

make如何⼯工作？
• make会在当前⽬目录下找名字叫“Makefile”或“makefile”的⽂文件

• 如果make命令运⾏行行时没有指定⽬目标，默认会执⾏行行Makefile⽂文件的第⼀一
个⽬目标，第⼀一个⽬目标习惯写为all

• make会⼀一层⼜又⼀一层地去找⽬目标的依赖关系

• ⽬目标的前置依赖都执⾏行行完了了，执⾏行行该⽬目标下的<commands>

⽬目标（target）
• ⼀一个⽬目标（target）就构成⼀一条规则。⽬目标通常是⽂文件名，指明make
命令所要构建的对象 。⽬目标可以是⼀一个⽂文件名，也可以是多个⽂文件
名，之间⽤用空格分隔。

• ⽬目标还可以是某个操作的名字，这称为"伪⽬目标"（phony target），⽐比
如clean，如果当前⽬目录中，正好有⼀一个⽂文件叫做clean，那么这个⽬目
标不不会执⾏行行。因为make发现clean⽂文件已经存在，就认为没有必要重
新构建了了，就不不会执⾏行行clean”伪⽬目标”。为了了避免这种情况，可以明确
声明clean是"伪⽬目标"：“.PHONY: clean”

前置条件（prerequisites）

• 前置条件通常是⼀一组⽂文件名，之间⽤用空格分隔。它指定了了"⽬目标"是否重
新构建的判断标准：只要有⼀一个前置⽂文件不不存在，或者有过更更新（前
置⽂文件的last-modification时间戳⽐比⽬目标的时间戳新），"⽬目标"就需要
重新构建。

命令（commands）
• 命令（commands）表示如何更更新⽬目标⽂文件，由⼀一⾏行行或多⾏行行的Shell命
令组成。它是构建”⽬目标"的具体指令，它的运⾏行行结果通常就是⽣生成⽬目标
⽂文件。

• 每⾏行行命令之前必须有⼀一个tab键。如果想⽤用其他键，可以⽤用内置变
量量.RECIPEPREFIX声明。⽤用.RECIPEPREFIX指定⼤大于号（>）替代tab
键：“.RECIPEPREFIX = >”

• 需要注意的是，每⾏行行命令在⼀一个单独的shell中执⾏行行。这些Shell之间没
有继承关系。

Makefile⽂文件的语法
• 井号（#）在Makefile中表示注释。

• 正常情况下，make会打印每条命令，然后再执⾏行行，这就叫做回声
（echoing）。在命令的前⾯面加上@，就可以关闭回声。

• 通配符（wildcard）⽤用来指定⼀一组符合条件的⽂文件名。Makefile 的通
配符与 Bash ⼀一致，主要有星号（*）、问号（？）等 。⽐比如， *.o 表
示所有后缀名为o的⽂文件。

模式匹配

• make命令允许对⽂文件名，进⾏行行类似正则运算的匹配，主要⽤用到的匹配
符是%。⽐比如，假定当前⽬目录下有 f1.c 和 f2.c 两个源码⽂文件，需要将
它们编译为对应的对象⽂文件：“%.o: %.c” 简写为“.c.o”⽬目标

• 使⽤用匹配符%，可以将⼤大量量同类型的⽂文件，只⽤用⼀一条规则就完成构
建。

变量量和赋值
• 使⽤用等号⾃自定义变量量，调⽤用时变量量需要放在 $() 之中

• txt = Hello World; echo $(txt)

• 调⽤用Shell变量量，需要在美元符号前，再加⼀一个美元符号，这是因为
make命令会对美元符号转义。

• echo $$HOME

• 变量量的值可能指向另⼀一个变量量，如v1 = $(v2)

四个赋值运算符 （=、:=、？=、+=）

• VARIABLE = value # 在执⾏行行时扩展，允许递归扩展。

• VARIABLE := value # 在定义时扩展。

• VARIABLE ?= value # 只有在该变量量为空时才设置值。

• VARIABLE += value # 将值追加到变量量的尾端。

内置变量量（Implicit Variables）

• make命令提供⼀一系列列内置变量量，主要是为了了跨平台的兼容性，

• $(CC) 指向当前使⽤用的编译器器，$(MAKE) 指向当前使⽤用的make⼯工具

内置变量量清单

⾃自动变量量（Automatic Variables）
• $@指代当前⽬目标，就是Make命令当前构建的那个⽬目标。

• $< 指代第⼀一个前置条件。

• $? 指代⽐比⽬目标更更新的所有前置条件，之间以空格分隔。

• $^ 指代所有前置条件，之间以空格分隔。

• $(@D) 和 $(@F) 分别指向 $@ 的⽬目录名和⽂文件名。

• $(<D) 和 $(<F) 分别指向 $< 的⽬目录名和⽂文件名。 ⾃自动变量量清单

判断和循环
• Makefile使⽤用 Bash 语法，完成判断和循环。

ifeq ($(CC),gcc)
 libs=$(libs_for_gcc)
else
 libs=$(normal_libs)
endif

判断和循环
LIST = one two three
all:
 for i in $(LIST); do \
 echo $$i; \
 done

等同于

all:
 for i in one two three; do \
 echo $i; \
 done

函数
• Makefile 还可以使⽤用函数，格式如

• $(function arguments) 或 ${function arguments}

• shell函数⽤用来执⾏行行 shell 命令，如$(shell echo src/{00..99}.txt)

内置函数列列表

Makefile实例例
.PHONY: cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff
 rm program

cleanobj :
 rm *.o

cleandiff :
 rm *.diff

Makefile for Menu Program

CC_PTHREAD_FLAGS = -lpthread
CC_FLAGS = -c
CC_OUTPUT_FLAGS = -o
CC = gcc
RM = rm
RM_FLAGS = -f
TARGET = test

OBJS = linktable.o menu.o test.o

all: $(OBJS)
 $(CC) $(CC_OUTPUT_FLAGS) $(TARGET) $(OBJS)

.c.o:
 $(CC) $(CC_FLAGS) $<

clean:
 $(RM) $(RM_FLAGS) $(OBJS) $(TARGET) *.bak

Makefile实例例

GDB: The GNU Project Debugger
• 开始调试之前，必须⽤用程序中的调试信息编译要调试的程序。这样，gdb 才能够调
试所使⽤用的变量量、代码⾏行行和函数。如果要进⾏行行编译，请在 gcc（或 g++）下使⽤用额
外的 '-g' 选项来编译程序gcc -g hello.c -o hello

• 在 shell 中，可以使⽤用 'gdb' 命令并指定程序名作为参数来运⾏行行 gdb，例例如 'gdb
hello'；或者在 gdb 中，可以使⽤用 file 命令来装⼊入要调试的程序，例例如 'file hello'。
这两种⽅方式都假设您是在包含程序的⽬目录中执⾏行行命令。装⼊入程序之后，可以⽤用 gdb
命令 'run' 来启动程序。

• 如果⼀一切正常，程序将执⾏行行到结束，此时 gdb 将重新获得控制。但如果有错误将会
怎么样？这种情况下，gdb 会获得控制并中断程序，从⽽而可以让您检查所有事物的
状态，如果运⽓气好的话，可以找出原因。

使⽤用断点
• 可以在程序代码中的某⼀一特定⾏行行或函数中设置断点，这样 gdb 会在遇到断
点时中断执⾏行行

• break main

• break 21 if value==div

• condition 1 value==div/condition 1（取消条件）

• info break

• next/step

变量量跟踪

• info locals

• print arg

• watch arg

• info watch

• set arg=1

堆栈跟踪

• 要打印堆栈，发出命令 'bt'（'backtrace' [回溯] 的缩写）

• 'frame' 命令中明确指定号码，或者使⽤用 'up' 命令在堆栈中上移以及
'down' 命令在堆栈中下移来切换帧。要获取有关帧的进⼀一步信息，如
它的地址和程序语⾔言，可以使⽤用命令 'info frame'。

实验
• wget https://github.com/mengning/menu/archive/

b5b077336ad86ebdb5bf88012a1c44139eaaedc6.zip

• unzip b5b077336ad86ebdb5bf88012a1c44139eaaedc6.zip

• mv menu-b5b077336ad86ebdb5bf88012a1c44139eaaedc6/ menu

• cd menu

• 以menu程序为例例理理解Makefile的执⾏行行过程以及gdb跟踪调试menu程序
test

